Deep- and reinforcement-learning techniques have increasingly required large sets of real data to achieve stable convergence and generalization, in the context of image-recognition, object-detection or motion-control strategies. On this subject, the research community lacks robust approaches to overcome unavailable real-world extensive data by means of realistic synthetic-information and domain-adaptation techniques. In this work, synthetic-learning strategies have been used for the vision-based autonomous following of a noncooperative multirotor. The complete maneuver was learned with synthetic images and high-dimensional low-level continuous robot states, with deep- and reinforcement-learning techniques for object detection and motion control, respectively. A novel motion-control strategy for object following is introduced where the camera gimbal movement is coupled with the multirotor motion during the multirotor following. Results confirm that our present framework can be used to deploy a vision-based task in real flight using synthetic data. It was extensively validated in both simulated and real-flight scenarios, providing proper results (following a multirotor up to 1.3 m/s in simulation and 0.3 m/s in real flights).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864684PMC
http://dx.doi.org/10.3390/s19214794DOI Listing

Publication Analysis

Top Keywords

deep- reinforcement-learning
8
reinforcement-learning techniques
8
vision-based multirotor
4
multirotor synthetic
4
synthetic learning
4
techniques
4
learning techniques
4
techniques deep-
4
techniques increasingly
4
increasingly required
4

Similar Publications

Novel deep reinforcement learning based collision avoidance approach for path planning of robots in unknown environment.

PLoS One

January 2025

Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Diriyah, Riyadh, Saudi Arabia.

Reinforcement learning is a remarkable aspect of the artificial intelligence field with many applications. Reinforcement learning facilitates learning new tasks based on action and reward principles. Motion planning addresses the navigation problem for robots.

View Article and Find Full Text PDF

Explainable post hoc portfolio management financial policy of a Deep Reinforcement Learning agent.

PLoS One

January 2025

Faculty of Economics and Business (ICADE), Universidad Pontificia Comillas, Madrid, Spain.

Financial portfolio management investment policies computed quantitatively by modern portfolio theory techniques like the Markowitz model rely on a set of assumptions that are not supported by data in high volatility markets such as the technological sector or cryptocurrencies. Hence, quantitative researchers are looking for alternative models to tackle this problem. Concretely, portfolio management (PM) is a problem that has been successfully addressed recently by Deep Reinforcement Learning (DRL) approaches.

View Article and Find Full Text PDF

Taming chimeras in coupled oscillators using soft actor-critic based reinforcement learning.

Chaos

January 2025

Complex Systems Group, Department of Mathematics and Statistics, The University of Western Australia, Crawley, Western Australia 6009, Australia.

We propose a universal method based on deep reinforcement learning (specifically, soft actor-critic) to control the chimera state in the coupled oscillators. The policy for control is learned by maximizing the expectation of the cumulative reward in the reinforcement learning framework. With the aid of the local order parameter, we design a class of reward functions for controlling the chimera state, specifically confining the spatial position of coherent and incoherent domains to any desired lateral position of oscillators.

View Article and Find Full Text PDF

This dataset is generated from real-time simulations conducted in MATLAB/Simscape, focusing on the impact of smart noise signals on battery energy storage systems (BESS). Using Deep Reinforcement Learning (DRL) agent known as Proximal Policy Optimization (PPO), noise signals in the form of subtle millivolt and milliampere variations are strategically created to represent realistic cases of False Data Injection Attacks (FDIA). These signals are designed to disrupt the State of Charge (SoC) and State of Health (SoH) estimation blocks within Unscented Kalman Filters (UKF).

View Article and Find Full Text PDF

generation of dual-target compounds using artificial intelligence.

iScience

January 2025

Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.

Drugs that interact with multiple therapeutic targets are potential high-value products in polypharmacology-based drug discovery, but the rational design remains a formidable challenge. Here, we present artificial intelligence (AI)-based methods to design the chemical structures of compounds that interact with multiple therapeutic target proteins. The molecular structure generation is performed by a fragment-based approach using a genetic algorithm with chemical substructures and a deep learning approach using reinforcement learning with stochastic policy gradients in the framework of generative adversarial networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!