Objective: To classify sleep states using electroencephalogram (EEG) that reliably works over a wide range of preterm ages, as well as term age.

Approach: A convolutional neural network is developed to perform 2- and 4-class sleep classification in neonates. The network takes as input an 8-channel 30 s EEG segment and outputs the sleep state probabilities. Apart from simple downsampling of the input and smoothing of the output, the suggested network is an end-to-end algorithm that avoids the need for hand-crafted feature selection or complex pre/post processing steps. To train and test this method, 113 EEG recordings from 42 infants are used.

Main Results: For quiet sleep detection (the 2-class problem), mean kappa between the network estimate and the ground truth annotated by EEG human experts is 0.76. The sensitivity and specificity are 90% and 88%, respectively. For 4-class classification, mean kappa is 0.64. The averaged sensitivity and specificity (1 versus all) respectively equal 72% and 91%. The results outperform current state-of-the-art methods for which kappa ranges from 0.66 to 0.70 in preterm and from 0.51 to 0.61 in term infants, based on training and testing using the same database.

Significance: The proposed method has the highest reported accuracy for EEG sleep state classification for both preterm and term age neonates.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/ab5469DOI Listing

Publication Analysis

Top Keywords

convolutional neural
8
neural network
8
preterm term
8
term infants
8
sleep state
8
sensitivity specificity
8
sleep
6
network
5
eeg
5
network outperforming
4

Similar Publications

With the rising demand of saffron, it is essential to standardize the confirmation of its origin and identify any adulteration to maintain a good quality led market product. However, a rapid and reliable strategy for identifying the adulteration saffron is still lacks. Herein, a combination of headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and convolutional neural network (CNN) was developed.

View Article and Find Full Text PDF

Introduction: Diabetic retinopathy (DR) has long been recognized as a common complication of diabetes, making accurate automated grading of its severity essential. Color fundus photographs play a crucial role in the grading of DR. With the advancement of artificial intelligence technologies, numerous researchers have conducted studies on DR grading based on deep features and radiomic features extracted from color fundus photographs.

View Article and Find Full Text PDF

Background: The National Lung Screening Trial (NLST) has shown that screening with low dose CT in high-risk population was associated with reduction in lung cancer mortality. These patients are also at high risk of coronary artery disease, and we used deep learning model to automatically detect, quantify and perform risk categorisation of coronary artery calcification score (CACS) from non-ECG gated Chest CT scans.

Materials And Methods: Automated calcium quantification was performed using a neural network based on Mask regions with convolutional neural networks (R-CNN) for multiorgan segmentation.

View Article and Find Full Text PDF

MambaTab: A Plug-and-Play Model for Learning Tabular Data.

Proc (IEEE Conf Multimed Inf Process Retr)

August 2024

Department of Computer Science, University of Kentucky, Lexington, KY, USA.

Despite the prevalence of images and texts in machine learning, tabular data remains widely used across various domains. Existing deep learning models, such as convolutional neural networks and transformers, perform well however demand extensive preprocessing and tuning limiting accessibility and scalability. This work introduces an innovative approach based on a structured state-space model (SSM), MambaTab, for tabular data.

View Article and Find Full Text PDF

Artificial Intelligence in Diagnosis and Management of Nail Disorders: A Narrative Review.

Indian Dermatol Online J

December 2024

Financial Research and Executive Insights, Everest Group, Gurugram, Haryana, India.

Background: Artificial intelligence (AI) is revolutionizing healthcare by enabling systems to perform tasks traditionally requiring human intelligence. In healthcare, AI encompasses various subfields, including machine learning, deep learning, natural language processing, and expert systems. In the specific domain of onychology, AI presents a promising avenue for diagnosing nail disorders, analyzing intricate patterns, and improving diagnostic accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!