Some of the oldest and most established industrial biotechnology processes involve the fungal production of organic acids. In these fungi, the transport of metabolites between cellular compartments, and their secretion, is a major factor. In this review we exemplify the importance of both mitochondrial and plasma membrane transporters in the case of itaconic acid production in two very different fungal systems, Aspergillus and Ustilago. Homologous and heterologous overexpression of both types of transporters, and biochemical analysis of mitochondrial transporter function, show that these two fungi produce the same compound through very different pathways. The way these fungi respond to itaconate stress, especially at low pH, also differs, although this is still an open field which clearly needs additional research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.copbio.2019.09.014 | DOI Listing |
Anticancer Drugs
January 2025
Department of Thoracic Surgery, Affiliated Hospital of Shaoxing University, The Shaoxing Municipal Hospital, Shaoxing, Zhejiang, China.
Intelligent hydrogels are promising in constructing scaffolds for the controlled delivery of drugs. Here, a dual thermo- and pH-responsive hydrogel called PCG [poly (N-isopropyl acrylamide-co-itaconic acid)/chitosan/glycerophosphate (PNI/CS/GP)] was established as the carrier of 5-fluorouracil (5-FU) for triple-negative breast cancer (TNBC) treatment. The PCG hydrogel was fabricated by blending synthesized [poly (N-isopropyl acrylamide-co-itaconic acid), pNIAAm-co-IA, PNI] with CS in the presence of GP as a crosslinking agent.
View Article and Find Full Text PDFInorg Chem
January 2025
Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
A Tm(III)-rich silicotungstate Na{Tm(HO)[Tm(HO)(SiWO)]}·35HO () based on the open Wells-Dawson-type [SiWO] building unit was synthesized by the reaction of Na[α-SiWO]·18HO, itaconic acid, and TmCl in a HAc/NaAc buffer solution. Five kinds of Tm(III) ions were found in this compound and further linked the {TmSiW} subunit to form an interesting wavy 1D chain structure, which achieved the introduction of more lanthanide (Ln) ions into the [SiWO] unit for the first time. contains multiple exposed Tm-metal active sites, making it an efficient catalyst for the acetalization of 2-aminobenzamides/2-aminobenzenesulphonamides with aldehydes.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana (UTEM), J. P. Alessandri 1242, Santiago 7800002, Chile.
A series of hydrophilic copolymers were prepared using 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) from free radical polymerization at different feed monomer ratios using ammonium persulfate (APS) initiators in water at 70 °C. The herbicide 2,4-dichlorophenoxy acetic acid (2,4-D) was grafted to Poly(HEMA--IA) by a condensation reaction. The hydrolysis of the polymeric release system, Poly(HEMA--IA)-2,4-D, demonstrated that the release of the herbicide in an aqueous phase depends on the polymeric system's pH value and hydrophilic character.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China.
Background: The rapid evolution of the COVID-19 pandemic and subsequent global immunization efforts have rendered early metabolomics studies potentially outdated, as they primarily involved non-exposed, non-vaccinated populations. This paper presents a predictive model developed from up-to-date metabolomics data integrated with clinical data to estimate early mortality risk in critically ill COVID-19 patients. Our study addresses the critical gap in current research by utilizing current patient samples, providing fresh insights into the pathophysiology of the disease in a partially immunized global population.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra 176206, India. Electronic address:
In the present study, we prepared Gum Acacia-cl-Acrylic acid-co-itaconic acid (GA-cl-AA-co-IA) hydrogels by free radical crosslink polymerization method for the efficient removal of Rhodamine-B (RhB) dye. The hydrogels were further characterized by different characterization techniques: Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Atomic force microscopy (AFM), Brunuer-Emmett-Teller (BET) and field emission scanning electron microscopy (FE-SEM) to confirm synthesis. The synthesis parameters were optimized by swelling studies, which were performed by gravimetric analysis method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!