Constitutive activation of MEK1 in osteoprogenitors increases strength of bone despite impairing mineralization.

Bone

University of Kentucky Barnstable Brown Diabetes Center, Lexington, KY, 40536, United States; Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40536, United States.

Published: January 2020

Recent clinical studies have revealed that a somatic mutation in MAP2K1, causing constitutive activation of MEK1 in osteogenic cells, occurs in melorheostotic bone disease in humans. We have generated a mouse model which expresses an activated form of MEK1 (MEK1DD) specifically in osteoprogenitors postnatally. The skeletal phenotype of these mice recapitulates many features of melorheostosis observed in humans, including extra-cortical bone formation, abundant osteoid formation, decreased mineral density, and increased porosity. Paradoxically, in both humans and mice, MEK1 activation in osteoprogenitors results in bone that is not structurally compromised, but is hardened and stronger, which would not be predicted based on tissue and matrix properties. Thus, a specific activating mutation in MEK1, expressed only by osteoprogenitors postnatally, can have a significant impact on bone strength through complex alterations in whole bone geometry, bone micro-structure, and bone matrix.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6914252PMC
http://dx.doi.org/10.1016/j.bone.2019.115106DOI Listing

Publication Analysis

Top Keywords

constitutive activation
8
activation mek1
8
bone
8
osteoprogenitors postnatally
8
mek1
5
osteoprogenitors
4
mek1 osteoprogenitors
4
osteoprogenitors increases
4
increases strength
4
strength bone
4

Similar Publications

GsMYB10 encoding a MYB-CC transcription factor enhances the tolerance to acidic aluminum stress in soybean.

BMC Plant Biol

December 2024

Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.

Background: MYB transcription factors (TFs) play crucial roles in the response to diverse abiotic and biotic stress factors in plants. In this study, the GsMYB10 gene encoding a MYB-CC transcription factor was cloned from wild soybean BW69 line. However, there is less report on the aluminum (Al)-tolerant gene in this subfamily.

View Article and Find Full Text PDF

Exposure to ultraviolet-B (UVB) induces the expansion of regulatory T (Treg) cells expressing proenkephalin (PENK) and amphiregulin (AREG) with a healing function in the skin. It is unclear how this UVB exposure affects the functionally distinct subsets of skin Treg cells. In this study, we have demonstrated that skin-resident CD81Treg cells expressing both Penk and Areg expanded after UVB irradiation.

View Article and Find Full Text PDF

Increased phosphorylation of AMPKα1 S485 in colorectal cancer and identification of PKCα as a responsible kinase.

Cancer Lett

December 2024

Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China. Electronic address:

The present study attempts to examine the biological effect of phosphorylation of AMPKα1 S485 and identify the responsible kinase in colon cancer cells. Thus, our results showed that S485 phosphorylation was increased in colorectal cancer specimens as compared with adjacent normal tissues, which was inversely correlated to phosphorylation of T172. Our study further revealed that phosphorylation of S485 on AMPKα1 plays a promoting role in cell proliferation, colony formation, migration and growth of Xenograft tumor.

View Article and Find Full Text PDF

Phenotypic Plasticity During Organofluorine Degradation Revealed by Adaptive Evolution.

Microb Biotechnol

December 2024

Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, USA.

A major factor limiting the biodegradation of organofluorine compounds has been highlighted as fluoride anion toxicity produced by defluorinating enzymes. Here, two highly active defluorinases with different activities were constitutively expressed in Pseudomonas putida ATCC 12633 to examine adaption to fluoride stress. Each strain was grown on α-fluorophenylacetic acid as the sole carbon source via defluorination to mandelic acid, and each showed immediate fluoride release and delayed growth.

View Article and Find Full Text PDF

Cyclooxygenase-2 (COX-2) plays a crucial role in inflammation and has been implicated in cancer development. Understanding the behavior of COX-2 in different cellular contexts is essential for developing targeted therapeutic strategies. In this study, we investigate the fluorescence spectrum of a fluorogenic probe, NANQ-IMC6, when bound to the active site of human COX-2 in both its monomeric and homodimeric forms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!