Federated learning allows multiple parties to jointly train a deep learning model on their combined data, without any of the participants having to reveal their local data to a centralized server. This form of privacy-preserving collaborative learning, however, comes at the cost of a significant communication overhead during training. To address this problem, several compression methods have been proposed in the distributed training literature that can reduce the amount of required communication by up to three orders of magnitude. These existing methods, however, are only of limited utility in the federated learning setting, as they either only compress the upstream communication from the clients to the server (leaving the downstream communication uncompressed) or only perform well under idealized conditions, such as i.i.d. distribution of the client data, which typically cannot be found in federated learning. In this article, we propose sparse ternary compression (STC), a new compression framework that is specifically designed to meet the requirements of the federated learning environment. STC extends the existing compression technique of top- k gradient sparsification with a novel mechanism to enable downstream compression as well as ternarization and optimal Golomb encoding of the weight updates. Our experiments on four different learning tasks demonstrate that STC distinctively outperforms federated averaging in common federated learning scenarios. These results advocate for a paradigm shift in federated optimization toward high-frequency low-bitwidth communication, in particular in the bandwidth-constrained learning environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2019.2944481 | DOI Listing |
Data Brief
February 2025
Universidade da Coruña, CITIC Research Center, A Coruña 15071, Spain.
This paper presents a synthetic dataset of labeled game situations in recordings of federated handball and basketball matches played in Galicia, Spain. The dataset consists of synthetic data generated from real video frames, including 308,805 labeled handball frames and 56,578 labeled basketball frames extracted from 2105 handball and 383 basketball 5-s video clips. Experts manually labeled the video clips based on the respective sports, while the individual frames were automatically labeled using computer vision and machine learning techniques.
View Article and Find Full Text PDFBrain Topogr
January 2025
Aging and Neuroscience Laboratory (LABEN), Federal University of Paraíba, João Pessoa, PB, Brazil.
Electroencephalography microstates (EEG-MS) show promise to be a neurobiological biomarker in stroke. Thus, the aim of the study was to identify biomarkers to discriminate stroke patients from healthy individuals based on EEG-MS and clinical features using a machine learning approach. Fifty-four participants (27 stroke patients and 27 healthy age and sex-matched controls) were recruited.
View Article and Find Full Text PDFCommun Eng
January 2025
Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC, USA.
Vision impairment affects nearly 2.2 billion people globally, and nearly half of these cases could be prevented with early diagnosis and intervention-underscoring the urgent need for reliable and scalable detection methods for conditions like diabetic retinopathy and age-related macular degeneration. Here we propose a distributed deep learning framework that integrates self-supervised and domain-adaptive federated learning to enhance the detection of eye diseases from optical coherence tomography images.
View Article and Find Full Text PDFMethods Inf Med
January 2025
Artificial Intelligence Lab, Mimos Berhad, Kuala Lumpur, Malaysia.
Objective: This is the first Malaysian machine learning model to detect and disambiguate abbreviations in clinical notes. The model has been designed to be incorporated into MyHarmony, a Natural Language Processing system, that extracts clinical information for healthcare management. The model utilizes word embedding to ensure feasibility of use, not in real-time but for secondary analysis, within the constraints of low-resource settings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!