Typical electromyogram (EMG) processors estimate EMG signal standard deviation (EMG σ ) via moving average root mean square (RMS) or mean absolute value (MAV) filters, whose outputs are used in force estimation, prosthesis/orthosis control, etc. In the inevitable presence of additive measurement noise, some processors subtract the noise standard deviation from EMG RMS (or MAV). Others compute a root difference of squares (RDS)-subtract the noise variance from the square of EMG RMS (or MAV), all followed by taking the square root. Herein, we model EMG as an amplitude-modulated random process in additive measurement noise. Assuming a Gaussian (or, separately, Laplacian) distribution, we derive analytically that the maximum likelihood estimate of EMG σ requires RDS processing. Whenever that subtraction would provide a negative-valued result, we show that EMG σ should be set to zero. Our theoretical models further show that during rest, approximately 50% of EMG σ estimates are non-zero. This result is problematic when EMG σ is used for real-time control, explaining the common use of additional thresholding. We tested our model results experimentally using biceps and triceps EMG from 64 subjects. Experimental results closely followed the Gaussian model. We conclude that EMG processors should use RDS processing and not noise standard deviation subtraction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNSRE.2019.2951081 | DOI Listing |
Eur Radiol
January 2025
Department of Information Technology, Uppsala University, 75237, Uppsala, Sweden.
Objectives: The aim is to assess the feasibility and accuracy of a novel quantitative ultrasound (US) method based on global speed-of-sound (g-SoS) measurement using conventional US machines, for breast density assessment in comparison to mammographic ACR (m-ACR) categories.
Materials And Methods: In a prospective study, g-SoS was assessed in the upper-outer breast quadrant of 100 women, with 92 of them also having m-ACR assessed by two radiologists across the entire breast. For g-SoS, ultrasonic waves were transmitted from varying transducer locations and the image misalignments between these were then related analytically to breast SoS.
Radiol Phys Technol
January 2025
Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-ogu, Arakawa, Tokyo, 116-8551, Japan.
In plain radiography, scattered X-ray correction processing (Virtual Grid: VG) is used to estimate and correct scattered rays in images. We developed an objective evaluation system for bedside chest X-ray images using VG and investigated its usefulness. First, we trained the blind/referenceless image spatial quality evaluator (BRISQUE) on 200 images obtained by portable chest radiography.
View Article and Find Full Text PDFEur J Neurol
January 2025
Department of Neurology, RWTH Aachen University, Aachen, Germany.
Background: Friedreich ataxia is a rare neurodegenerative disorder caused by frataxin deficiency. Both underweight and overweight occur in mitochondrial disorders, each with adverse health outcomes. We investigated the longitudinal evolution of anthropometric abnormalities in Friedreich ataxia and the hypothesis that both weight loss and weight gain are associated with faster disease progression.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
CGH Compagnie Generale des Hopitaux, Rome, Italy.
Introduction: In recent years, the field of aesthetic dermatology has witnessed a surge in demand for minimally invasive procedures aimed at rejuvenating aging skin. This study aims to address this demand by evaluating the effectiveness of the injectable gel in rejuvenating aging skin, particularly by targeting collagen regeneration and lifting effect.
Materials And Methods: The study involved 43 participants who underwent three monthly injection sessions targeting retaining ligaments.
J Clin Med
December 2024
Faculty of Medicine, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland.
: Cutaneous T-cell lymphoma (CTCL), including Mycosis fungoides (MF) and Sézary syndrome (SS), is a challenging-to-diagnose lymphoproliferative malignancy characterized by T-cell dysfunction and progressive cutaneous and extra cutaneous involvement. Disease severity assessment in CTCL is crucial for guiding treatment. This study aims to evaluate the interrater agreement and interrater reliability of mSWAT among dermatology residents and identify lesion types most prone to scoring variability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!