The circadian system is a critical regulator of metabolism and obesity in males, but its role in regulating obesity in females is poorly understood. Because there are sex differences in the development of obesity and susceptibility to obesity-related disorders, we sought to determine the role of estrogens in regulating the circadian mechanisms underlying diet-induced obesity. When fed high-fat diet, C57BL/6J male mice gain weight, whereas females are resistant to diet-induced obesity. Here, we demonstrate that estradiol regulates circadian rhythms in females to confer resistance to diet-induced obesity. We found that ovariectomized females with undetectable circulating estrogens became obese and had disrupted daily rhythms of eating behavior and locomotor activity when fed a high-fat diet. The phase of the liver molecular circadian rhythm was also altered by high-fat diet feeding in ovariectomized mice. Estradiol replacement in ovariectomized females a fed high-fat diet rescued these behavioral and tissue rhythms. Additionally, restoring the daily rhythm of eating behavior in ovariectomized females with time-restricted feeding inhibited diet-induced obesity and insulin resistance. Together, these data suggest that the circadian system is a target for treating obesity and its comorbidities in women after menopause, when circulating levels of estrogens are too low to protect their circadian rhythms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6957379PMC
http://dx.doi.org/10.1152/ajpendo.00365.2019DOI Listing

Publication Analysis

Top Keywords

diet-induced obesity
20
high-fat diet
16
fed high-fat
12
ovariectomized females
12
obesity
9
estradiol regulates
8
daily rhythms
8
underlying diet-induced
8
circadian system
8
circadian rhythms
8

Similar Publications

Metabolic profiling of abdominal subcutaneous adipose tissue reveals effects of apple polyphenols for reversing high-fat diet induced obesity in C57BL/6 J mice.

Food Chem

January 2025

College of Food Science and Technology, Northwest University, Xi'an 710069, Shaanxi, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an 710069, Shaanxi, China; Research Center of Food Safety Risk Assessment and Control, Xi'an 710069, Shaanxi, China. Electronic address:

Apple polyphenols (APP) can reduce obesity. However, the effects of APP on abdominal subcutaneous adipose tissue (aSAT) at metabolic level were unclear. In this study, 5-week APP intervenes were conducted on 10-week high-fat diet (HFD) feeding mice with doses of 200 and 500 mg/kg b.

View Article and Find Full Text PDF

Quercetin (QE), a particular flavonoid, is well known for its medicinal effects, including anti-oxidant, hypoglycemic, and anti-inflammatory effects. In this review, the findings of QE effects on diabetes STZinduced, alloxan-induced, and its complications have been summarized with a particular focus on in vitro, in vivo, and clinical trials. Consequently, QE mediates several mechanisms, including ameliorating tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin (IL)-1β, IL-8, and IL-10 expression, increasing insulin glucose uptake to inhibit insulin resistance.

View Article and Find Full Text PDF

Chrysanthemum extract mitigates high-fat diet-induced inflammation, intestinal barrier damage and gut microbiota disorder.

Food Funct

January 2025

Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China.

An effective intervention for obesity without side effects is needed. Chrysanthemum may be the preferred choice due to its influence in the improvement of glycolipid metabolism. This study assessed the efficacy of chrysanthemum and its flavonoids in mitigating high-fat diet (HFD) induced obesity, focusing on the integrity of the intestinal barrier, inflammation, and gut microbiota.

View Article and Find Full Text PDF

Diet-Microbiome-ENS connection: Impact of the Cafeteria Diet.

Am J Physiol Gastrointest Liver Physiol

January 2025

Digestive Diseases, Emory University, Atlanta, GA, United States.

The interplay between diet-induced obesity and gastrointestinal dysfunction is an evolving area of research with far-reaching implications for understanding the gutbrain axis interactions. In their study, Ramírez-Maldonado et al. employ a cafeteria (CAF) diet model to investigate the effects on gut microbiota, enteric nervous system (ENS) integrity and function, and gastrointestinal motility in mice.

View Article and Find Full Text PDF

CIDEC/FSP27 exacerbates obesity-related abdominal aortic aneurysm by promoting perivascular adipose tissue inflammation.

Life Metab

February 2025

Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China.

Abdominal aortic aneurysm (AAA) is strongly correlated with obesity, partially due to the abnormal expansion of abdominal perivascular adipose tissue (PVAT). Cell death-inducing DNA fragmentation factor-like effector C (CIDEC), also known as fat-specific protein 27 (FSP27) in rodents, is specifically expressed in adipose tissue where it mediates lipid droplet fusion and adipose tissue expansion. Whether and how CIDEC/FSP27 plays a role in AAA pathology remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!