A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluating Computational Chemistry Methods for Isotopic Fractionation between CO(g) and HO(g). | LitMetric

Evaluating Computational Chemistry Methods for Isotopic Fractionation between CO(g) and HO(g).

J Chem Inf Model

Department of Geological Sciences , University of Texas at El Paso, El Paso , Texas 77968 , United States.

Published: November 2019

Quantum mechanical calculations can be useful in predicting equilibrium isotopic fractionations of geochemical reactions. However, these computational chemistry methods vary widely in their effectiveness in the prediction of various physical observables. Most studies employing the approach known as density functional theory (DFT) to model these observable quantities focus on predictive accuracy for energetics and geometries. In this study, several density functionals are evaluated against experimental bond lengths, harmonic vibrational frequencies, frequency shifts upon isotopic substitution, and O/O isotopic fractionation between CO(g) and HO(g). Successful prediction of harmonic vibrational frequencies strongly correlates with successful prediction of isotopic fractionation, despite the possible introduction of errors by the harmonic approximation. Harmonic experimental frequencies, not anharmonic ones, must be used when comparing spectra and when predicting isotope fractionation. The B3LYP and X3LYP functionals perform more accurately in the evaluation of both harmonic vibrational frequencies and isotopic fractionation factors using the 6-311+G(d,p) and 6-311++G(2d,p) basis sets, achieving fractionation factor errors of 0.2-0.6‰ at 25 °C out of a total fractionation of 51‰. Error cancellation between vibrational frequencies and the harmonic approximation is crucial to their success. The above combination of exchange-correlation functionals and basis sets also well predicts the vibrational properties of interacting CO and HO molecules, suggesting that they may be applicable to more complex geochemical reactions involving C and O isotopic fractionations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.9b00392DOI Listing

Publication Analysis

Top Keywords

isotopic fractionation
16
vibrational frequencies
16
harmonic vibrational
12
computational chemistry
8
chemistry methods
8
fractionation cog
8
cog hog
8
isotopic fractionations
8
geochemical reactions
8
successful prediction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!