Metallomics
Department of Toxicology, School of Public Health, China Medical University, Shenyang 110001, China.
Published: January 2020
Lead sulfide nanoparticles (PbS NPs) are semiconductor materials that have been widely applied to light-emitting diodes (LEDs), biological fluorescent probes, infrared detection, solar receivers, ion-selective electrodes, and ion-sensitive materials. However, the effects of PbS NPs on the central nervous system are still unclear. Thus, this study aimed to determine, using rats, the mechanism of action of PbS NPs, exposure to which results in persistent alterations in nervous system function. The results of the Morris water maze test showed that PbS NPs significantly impaired learning and memory. Compared with that in the control group, the lead content in the hippocampal tissue was significantly elevated after PbS NP exposure. Exposure to PbS NPs led to increased oxidative damage in blood and hippocampal tissues, and significantly inhibited the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) while increasing the serum malondialdehyde (MDA) content. In addition, reactive oxygen species triggered the activation of Nrf2 and the antioxidant system, including HO-1, r-GCS, and GSH-Px. Moreover, we observed significant apoptosis in the hippocampi of the rats using the TUNEL assay and transmission electron microscopy. The MOD values from the TUNEL assay of the hippocampi were all significantly higher than those of the control group, which increased as the concentration of the PbS NPs increased. There were also changes in the ultrastructure of the hippocampal neurons and synapses in the PbS-treated rats, including a shorter synaptic active zone, smaller curvature of the synaptic interface, and thicker postsynaptic density. Therefore, PbS NP exposure could lead to increased brain lead content, oxidative damage, and apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9mt00151d | DOI Listing |
Sci Rep
January 2025
Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
Liver cancer is globally the most frequent fatal malignancy, and its identification is critical for making clinical decisions about treatment options. Pathological diagnostics and contemporary imaging technologies provide insufficient information for tumor identification. Hydrogen peroxide (HO), an emerging biomarker is a powerful oxidant found in the tumor microenvironment, and stimulates the invasion, proliferation, and metastasis of liver cancer cells.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan.
With the development of nanotechnology, there is growing interest in using nanoparticles (NPs) for biomedical applications, such as diagnostics, drug delivery, imaging, and nanomedicine. The protein's structural stability plays a pivotal role in its functionality, and any alteration in this structure can have significant implications, including disease progression. Herein, we performed a combined experimental and computational study of the effect of gold NPs with a diameter of 5 nm (5 nm Au-NPs) on the structural stability of bovine serum albumin (BSA) protein in the absence and presence of NaCl salt.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Breast Surgery, General Surgery Center of The First Hospital, Jilin University, Changchun, China.
Introduction: Chemo-immunotherapy based on inducing tumor immunogenic cell death (ICD)with chemotherapy drugs has filled the gaps between traditional chemotherapy and immunotherapy. It is verified that paclitaxel (PTX) can induce breast tumor ICD. From this basis, a kind of nanoparticle that can efficiently deliver different drug components simultaneously is constructed.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea. Electronic address:
Cancer, a key factor in declining global life expectancy, has driven the integration of chemotherapy and immunotherapy to address multidrug resistance and influence the tumor microenvironment. We developed a novel vaccine delivery carrier, a chitosan-coated polylactic acid/poloxamer nanoparticle (CPP NP), designed to co-encapsulate an anticancer drug and antigen without any chemical conjugation process, enabling effective and synergistic cancer chemo-immunotherapy. The CPP NP achieved synergistic efficacy through paclitaxel (PTX), an immunogenic cell death-inducing chemotherapeutic agent; ovalbumin (OVA), which promotes dendritic cell maturation; and enhanced cellular uptake facilitated by chitosan.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
Sulfate-reducing microorganisms (SRMs) show promise for heavy metal removal from contaminated environments, but their scalability is limited by reliance on organic carbon, sludge formation, and CO emissions. This study investigates using photoelectrons from biogenic (Bio-ZnS) and abiogenic (Abio-ZnS) sphalerite nanoparticles to enhance the activity of G20 (G20) for sulfate reduction and lead removal without organic substrates. Both Abio-ZnS and Bio-ZnS NPs promote sulfate reduction and energy production in G20 cells under illumination without the addition of organic substrates, with Bio-ZnS achieving 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.