We present research using single-image super-resolution (SISR) algorithms to enhance knowledge of the seafloor using the 1-minute GEBCO 2014 grid when 100m grids from high-resolution sonar systems are available for training. We performed numerical experiments of x15 upscaling along three midocean ridge areas in the Eastern Pacific Ocean. We show that four SISR algorithms can enhance this low-resolution knowledge of bathymetry versus bicubic or Splines-In-Tension algorithms through upscaling under these conditions: 1) rough topography is present in both training and testing areas and 2) the range of depths and features in the training area contains the range of depths in the enhancement area. We quantitatively judged successful SISR enhancement versus bicubic interpolation when Student's hypothesis testing show significant improvement of the root-mean squared error (RMSE) between upscaled bathymetry and 100m gridded ground-truth bathymetry at 005. In addition, we found evidence that random forest based SISR methods may provide more robust enhancements versus non-forest based SISR algorithms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820091 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2019.e02570 | DOI Listing |
Structured illumination-based super-resolution Förster resonance energy transfer microscopy (SISR-FRETM) has facilitated better observation of molecular behavior in living cells. However, SIM tends to produce artifacts in reconstruction, especially when the raw SIM inputs are of low signal-to-noise ratio (SNR) or out-of-focus, leading to erroneous signals in subsequent FRET. Current SIM quality evaluation metrics fail to utilize both SNR and out-of-focus features, making it challenging to classify unqualified raw data for FRET.
View Article and Find Full Text PDFNeural Netw
December 2024
School of Information Engineering, Guangdong University of Technology, Guangzhou, 510006, China. Electronic address:
Vision Transformer have achieved impressive performance in image super-resolution. However, they suffer from low inference speed mainly because of the quadratic complexity of multi-head self-attention (MHSA), which is the key to learning long-range dependencies. On the contrary, most CNN-based methods neglect the important effect of global contextual information, resulting in inaccurate and blurring details.
View Article and Find Full Text PDFSensors (Basel)
June 2024
School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China.
Detail preservation is a major challenge for single image super-resolution (SISR). Many deep learning-based SISR methods focus on lightweight network design, but these may fall short in real-world scenarios where performance is prioritized over network size. To address these problems, we propose a novel plug-and-play attention module, rich elastic mixed attention (REMA), for SISR.
View Article and Find Full Text PDFNeural Netw
October 2024
Department of Electrical and Electronic Engineering, Imperial College London, London, SW72AZ, UK. Electronic address:
Although recent studies on blind single image super-resolution (SISR) have achieved significant success, most of them typically require supervised training on synthetic low resolution (LR)-high resolution (HR) paired images. This leads to re-training necessity for different degradations and restricted applications in real-world scenarios with unfavorable inputs. In this paper, we propose an unsupervised blind SISR method with input underlying different degradations, named different degradations blind super-resolution (DDSR).
View Article and Find Full Text PDFNeural Netw
September 2024
School of Computer and Software Engineering, Xihua University, Chengdu, 610039, China.
Image super-resolution (ISR) is designed to recover lost detail information from low-resolution images, resulting in high-quality and high-definition high-resolution images. In the existing single ISR (SISR) methods based on convolutional neural networks (CNN), however, most of the models cannot effectively combine global and local information and are also easy to ignore the correlation between different hierarchical feature information. To address these problems, this study proposes a multi-level feature interactive image super-resolution network, which is constructed by the convolutional units inspired by nonlinear spiking mechanism in nonlinear spiking neural P systems, including shallow feature processing, deep feature extraction and fusion, and reconstruction modules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!