Recently, rice breeding program has shown increased interests on the pigmented rice varieties due to their benefits to human health. However, the genetic variation of pigmented rice varieties is still scarce and remains unexplored. Hence, we performed genome-wide SNP analysis from the genome resequencing of four Malaysian pigmented rice varieties, representing two black and two red rice varieties. The genome of four pigmented varieties was mapped against Nipponbare reference genome sequences, and 1.9 million SNPs were discovered. Of these, 622 SNPs with polymorphic sites were identified in 258 protein-coding genes related to metabolism, stress response, and transporter. Comparative analysis of 622 SNPs with polymorphic sites against six rice SNP datasets from the Ensembl Plants variation database was performed, and 70 SNPs were identified as novel SNPs. Analysis of SNPs in the flavonoid biosynthetic genes revealed 40 nonsynonymous SNPs, which has potential as molecular markers for rice seed colour identification. The highlighted SNPs in this study show effort in producing valuable genomic resources for application in the rice breeding program, towards the genetic improvement of new and improved pigmented rice varieties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6811786 | PMC |
http://dx.doi.org/10.1155/2019/4168045 | DOI Listing |
Sci Total Environ
January 2025
Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
Rice productivity and quality are increasingly at risk in arsenic (As) affected areas, challenge that is expected to worsen under changing climatic conditions. Free-Air Concentration Enrichment experiments revealed that eCO, eO, and eTemp, whether acting individually or in combination with low and high As irrigation, significantly impact rice yield and grain quality. Elevated CO₂ significantly increased shoot biomass, with minimal impact on root biomass, except under low As irrigation conditions.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Long Ping Branch, College of Biology, Hunan University, Changsha 410125, China.
Phosphoenolpyruvate (PEP) plays a key role in the development of plants and exists in a wide variety of species. Research on the metabolic activities of PEP in plants has received increasing attention. PEP regulates multiple processes in plant growth and development.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China.
Salt stress represents a significant abiotic stress factor that impedes the growth of rice. Nano-silicon has the potential to enhance rice growth and salt tolerance. In this experiment, the rice variety 9311 was employed as the test material to simulate salt stress via hydroponics, with the objective of investigating the mitigation effect of foliar application of nano-silicon on rice seedlings.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China.
Rice is exposed to attacks by the three most destructive pathogens, (), pv. (), and (), which cause substantial yield losses and severely threaten food security. To cope with pathogenic infections, rice has evolved diverse molecular mechanisms to respond to a wide range of pathogens.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
Salt stress poses a significant constraint on rice production, so further exploration is imperative to elucidate the intricate molecular mechanisms governing salt tolerance in rice. By manipulating the rhizosphere microbial communities or targeting specific microbial functions, it is possible to enhance salt tolerance in crops, improving crop yields and food security in saline environments. In this study, we conducted rice rhizospheric microbial amplicon sequencing and metatranscriptome analysis, revealing substantial microbiomic differences between the salt-tolerant rice cultivar TLJIAN and the salt-sensitive HUAJING.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!