Purpose: To illustrate the structure-function relationship of compressive optic neuropathy (CON) at the time of diagnosis.
Patients And Methods: Thirty-two eyes of newly diagnosed suprasellar CON and 60 healthy eyes were included in the study. The peripapillary retinal nerve fiber layer (RNFL) thickness and macular ganglion cell-inner plexiform layer (GCIPL) thickness were obtained using Cirrus spectral domain optical coherence tomography (SD-OCT). CON eyes were stratified based on the similar degree and pattern of both RNFL and GCIPL.
Results: From 32 eyes of newly diagnosed suprasellar CON eyes, 27 eyes had a predominantly nasal hemiretina thinning of macular GCIPL, 4 eyes showed a generalized macular thinning, and 1 eye showed a predominantly superior macular thinning. The corresponding temporal peripapillary RNFL thinning with nasal hemiretina GCIPL thinning were inconsistently manifested. Structure-function analysis of stratified CON eyes with similar thinning profiles showed that a range rather than a fixed value of visual field loss based on mean deviation (MD) index was associated to each thinning profile. The maximal limit of visual field loss range was ubiquitously nonrestricted to any structural thinning profile. While the minimal limit of the associated MD range was gradually reduced from 0 to about -16.0 dB, the nasal hemiretina macular GCIPL thinning was the only manifestation and decreased from 75 to 45 µm. However, the different degrees of temporal hemiretina macular GCIPL and superior-inferior peripapillary RNFL thinning were only seen in 10 of 32 eyes of which their nasal hemiretina GCIPL and temporal RNFL thinning had reached significant thinning. Interestingly when present, the minimal limit of associated MD range continued to decrease from -16.0 to -32.0 dB.
Conclusion: CON eyes can present with variable structure and function relationship at the time of diagnosis. Using structural parameters at the time of diagnosis to predict the prognosis should be used with caution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6709828 | PMC |
http://dx.doi.org/10.2147/OPTH.S215115 | DOI Listing |
In Vivo
December 2024
Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic for Korea
Background/aim: Diabetic retinopathy (DR), a complication of diabetes, causes damage to retinal blood vessels and can lead to vision impairment. Persistent high blood glucose levels contribute to this damage, and despite ongoing research, effective treatment options for DR remain limited. Dimethyl sulfoxide (DMSO) has shown anti-inflammatory and antioxidant properties in both in vivo and in vitro studies; however, its potential as an anti-inflammatory agent in the context of DR has not yet been explored.
View Article and Find Full Text PDFThis study aimed to quantify fundus microvascular alterations in patients requiring revascularization for coronary heart disease (CHD) using swept-source optical coherence tomography angiography (SS-OCTA) and to investigate the correlation between these alterations and the severity of coronary artery lesions. SS-OCTA was employed to assess the fundus neurovascular parameters of all participants, while the Gensini score was utilized to gauge the severity of coronary artery lesions in observation group. A total of 98 participants (49 CHD patients and 49 controls) were included.
View Article and Find Full Text PDFExp Eye Res
December 2024
Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, China. Electronic address:
Myopia is a significant global public health issue. Key interventions for managing myopia include atropine treatment, optical correction, and surgical methods. This study focused on evaluating alterations in retinal protein expression after atropine therapy for myopia.
View Article and Find Full Text PDFRecenti Prog Med
December 2024
Department of General practice, University Hospital Würzburg, Germany.
Front Hum Neurosci
November 2024
College of Physical Education, Dalian University, Dalian, China.
Introduction: Vision serves as a critical channel for athletes to acquire information during competitions and constitutes a vital component of their competitive ability. Through scientifically designed sports visual training, specific visual skills can be enhanced, thereby assisting athletes in achieving optimal performance in competitive settings. This study aim to explore the visuomotor abilities and shooting performance of skeet shooters through Sports Vision Training (SVT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!