Flying insects capable of navigating in highly cluttered natural environments can withstand in-flight collisions because of the combination of their low inertia and the resilience of their wings, exoskeletons and muscles. Current insect-scale (less than ten centimetres long and weighing less than five grams) aerial robots use rigid microscale actuators, which are typically fragile under external impact. Biomimetic artificial muscles that are capable of large deformation offer a promising alternative for actuation because they can endure the stresses caused by such impacts. However, existing soft actuators have not yet demonstrated sufficient power density to achieve lift-off, and their actuation nonlinearity and limited bandwidth create further challenges for achieving closed-loop (driven by an input control signal that is adjusted based on sensory feedback) flight control. Here we develop heavier-than-air aerial robots powered by soft artificial muscles that demonstrate open-loop (driven by a predetermined signal without feedback), passively stable (upright during flight) ascending flight as well as closed-loop, hovering flight. The robots are driven by multi-layered dielectric elastomer actuators that weigh 100 milligrams each and have a resonance frequency of 500 hertz and power density of 600 watts per kilogram. To increase the mechanical power output of the actuator and to demonstrate flight control, we present ways to overcome challenges unique to soft actuators, such as nonlinear transduction and dynamic buckling. These robots can sense and withstand collisions with surrounding obstacles and can recover from in-flight collisions by exploiting material robustness and vehicle passive stability. We also fly two micro-aerial vehicles simultaneously in a cluttered environment. They collide with the wall and each other without suffering damage. These robots rely on offboard amplifiers and an external motion-capture system to provide power to the dielectric elastomer actuators and to control their flight. Our work demonstrates how soft actuators can achieve sufficient power density and bandwidth to enable controlled flight, illustrating the potential of developing next-generation agile soft robots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-019-1737-7 | DOI Listing |
Anesth Analg
February 2025
SC Terapia Intensiva Neurochirurgica, Ospedale San Carlo Borromeo, ASST Santi Paolo e Carlo, Milano, Italy.
Background: Computed tomography (CT)-derived low muscle mass is associated with adverse outcomes in critically ill patients. Muscle ultrasound is a promising strategy for quantitating muscle mass. We evaluated the association between baseline ultrasound rectus femoris cross-sectional area (RF-CSA) and intensive care unit (ICU) mortality.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Robotics, Autonomous System and Sensing, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK.
Knee joint disorders pose a significant and growing challenge to global healthcare systems. Recent advancements in robotics, sensing technologies, and artificial intelligence have driven the development of robot-assisted therapies, reducing the physical burden on therapists and improving rehabilitation outcomes. This study presents a novel knee exoskeleton designed for safe and adaptive rehabilitation, specifically targeting bed-bound stroke patients to enable early intervention.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Information Technology, Aylol University College, Yarim 547, Yemen.
Background: Neurodegenerative diseases (NGD) encompass a range of progressive neurological conditions, such as Alzheimer's disease (AD) and Parkinson's disease (PD), characterised by the gradual deterioration of neuronal structure and function. This degeneration manifests as cognitive decline, movement impairment, and dementia. Our focus in this investigation is on PD, a neurodegenerative disorder characterized by the loss of dopamine-producing neurons in the brain, leading to motor disturbances.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Laboratory of Animal Husbandry, Department of Animal Production, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Artificial rearing (AR) of lambs is nowadays a common practice in Mediterranean dairy sheep production systems to enhance the milk available for cheese or yoghurt manufacturing. The sufficient growth of lambs in an AR system is vital for the economic success of dairy sheep farms. However, AR is often associated with negative impacts on the performance and physiology of lambs.
View Article and Find Full Text PDFCrit Care
January 2025
Departamento de Medicina, Hospital Clínico Universidad de Chile, Unidad de Pacientes Críticos, Dr. Carlos Lorca Tobar 999, Independencia, Santiago, Chile.
Background: Double cycling with breath-stacking (DC/BS) during controlled mechanical ventilation is considered potentially injurious, reflecting a high respiratory drive. During partial ventilatory support, its occurrence might be attributable to physiological variability of breathing patterns, reflecting the response of the mode without carrying specific risks.
Methods: This secondary analysis of a crossover study evaluated DC/BS events in hypoxemic patients resuming spontaneous breathing in cross-over under neurally adjusted ventilatory assist (NAVA), proportional assist ventilation (PAV +), and pressure support ventilation (PSV).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!