Efforts to construct synthetic biological circuits with more complex functions have often been hindered by the idiosyncratic behavior, limited dynamic range and crosstalk of commonly utilized parts. Here, we employ de novo RNA design to develop two high-performance translational repressors with sensing and logic capabilities. These synthetic riboregulators, termed toehold repressors and three-way junction (3WJ) repressors, detect transcripts with nearly arbitrary sequences, repress gene expression by up to 300-fold and yield orthogonal sets of up to 15 devices. Automated forward engineering is used to improve toehold repressor dynamic range and SHAPE-Seq is applied to confirm the designed switching mechanism of 3WJ repressors in living cells. We integrate the modular repressors into biological circuits that execute universal NAND and NOR logic and evaluate the four-input expression NOT ((A1 AND A2) OR (B1 AND B2)) in Escherichia coli. These capabilities make toehold and 3WJ repressors valuable new tools for biotechnological applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864284PMC
http://dx.doi.org/10.1038/s41589-019-0388-1DOI Listing

Publication Analysis

Top Keywords

3wj repressors
12
biological circuits
8
dynamic range
8
repressors
6
novo-designed translation-repressing
4
translation-repressing riboregulators
4
riboregulators multi-input
4
multi-input cellular
4
cellular logic
4
logic efforts
4

Similar Publications

The toehold switch is an RNA-based riboregulator that activates translation in response to a cognate trigger RNA and provides high ON/OFF ratios, excellent orthogonality, and logic capabilities. Riboregulators that provide the inverse function - turning off translation in response to a trigger RNA - are also versatile tools for sensing and efficiently implementing logic gates such as NAND or NOR. Toehold and three-way junction (3WJ) repressors are two de novo designed translational repressors devised to provide NOT functions with an easily programmable and intuitive structural design.

View Article and Find Full Text PDF

Implementation of novel boolean logic gates for IMPLICATION and XOR functions using riboregulators.

Bioengineered

January 2022

The iGEM Laboratory of OUC-China, College of Marine Life Sciences, Ocean University of China, Qingdao, China.

To date, several different types of synthetic genetic switches, including riboregulators, riboswitches, and toehold switches, have been developed to construct AND, OR, NOT, NAND, NOR, and NOT IMPLICATION (NIMP) gates. The logic gate can integrate multiple input signals following a set of algorithms and generate a response only if strictly defined conditions are met. However, there are still some logic gates that have not been implemented but are necessary to build complex genetic circuits.

View Article and Find Full Text PDF

RNA-based regulators are promising tools for building synthetic biological systems that provide a powerful platform for achieving a complex regulation of transcription and translation. Recently, de novo-designed synthetic RNA regulators, such as the small transcriptional activating RNA (STAR), toehold switch (THS), and three-way junction (3WJ) repressor, have been utilized to construct RNA-based synthetic gene circuits in living cells. In this work, we utilized these regulators to construct type 1 incoherent feed-forward loop (IFFL) circuits in vivo and explored their dynamic behaviors.

View Article and Find Full Text PDF

De novo-designed translation-repressing riboregulators for multi-input cellular logic.

Nat Chem Biol

December 2019

Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.

Efforts to construct synthetic biological circuits with more complex functions have often been hindered by the idiosyncratic behavior, limited dynamic range and crosstalk of commonly utilized parts. Here, we employ de novo RNA design to develop two high-performance translational repressors with sensing and logic capabilities. These synthetic riboregulators, termed toehold repressors and three-way junction (3WJ) repressors, detect transcripts with nearly arbitrary sequences, repress gene expression by up to 300-fold and yield orthogonal sets of up to 15 devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!