Josephson coupled Ising pairing induced in suspended MoS bilayers by double-side ionic gating.

Nat Nanotechnol

Device Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands.

Published: December 2019

Superconductivity in monolayer transition metal dichalcogenides is characterized by Ising-type pairing induced via a strong Zeeman-type spin-orbit coupling. When two transition metal dichalcogenides layers are coupled, more exotic superconducting phases emerge, which depend on the ratio of Ising-type protection and interlayer coupling strength. Here, we induce superconductivity in suspended MoS bilayers and unveil a coupled superconducting state with strong Ising-type spin-orbit coupling. Gating the bilayer symmetrically from both sides by ionic liquid gating varies the interlayer interaction and accesses electronic states with broken local inversion symmetry while maintaining the global inversion symmetry. We observe a strong suppression of the Ising protection that evidences a coupled superconducting state. The symmetric gating scheme not only induces superconductivity in both atomic sheets but also controls the Josephson coupling between the layers, which gives rise to a dimensional crossover in the bilayer.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41565-019-0564-1DOI Listing

Publication Analysis

Top Keywords

pairing induced
8
suspended mos
8
mos bilayers
8
transition metal
8
metal dichalcogenides
8
spin-orbit coupling
8
coupled superconducting
8
superconducting state
8
inversion symmetry
8
josephson coupled
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!