After chemical pretreatment, improved amenability of agrowaste biomass for enzymatic saccharification needs an understanding of the effect exerted by pretreatments on biomass for enzymatic deconstruction. In present studies, NaOH, NHOH and HSO pretreatments effectively changed visible morphology imparting distinct fibrous appearance to sugarcane bagasse (SCB). Filtrate analysis after NaOH, NHOH and HSO pretreatments yielded release of soluble reducing sugars (SRS) in range of ~0.17-0.44%, ~0.38-0.75% and ~2.9-8.4% respectively. Gravimetric analysis of pretreated SCB (PSCB) biomass also revealed dry weight loss in range of ~25.8-44.8%, ~11.1-16.0% and ~28.3-38.0% by the three pretreatments in the same order. Release of soluble components other than SRS, majorly reported to be soluble lignins, were observed highest for NaOH followed by HSO and NHOH pretreatments. Decrease or absence of peaks attributed to lignin and loosened fibrous appearance of biomass during FTIR and SEM studies respectively further corroborated with our observations of lignin removal. Application of commercial cellulase increased raw SCB saccharification from 1.93% to 38.84%, 25.56% and 9.61% after NaOH, HSO and NHOH pretreatments. Structural changes brought by cell wall degrading enzymes were first time shown visually confirming the cell wall disintegration under brightfield, darkfield and fluorescence microscopy. The microscopic evidence and saccharification results proved that the chemical treatment valorized the SCB by making it amenable for enzymatic saccharification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6828687 | PMC |
http://dx.doi.org/10.1038/s41598-019-52347-7 | DOI Listing |
J Environ Manage
January 2025
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:
Xylooligosaccharides (XOS), consisting 2-6 xylose residues, are a new type of prebiotic and functional oligosaccharides, and can usually be produced from the xylan-riched lignocellulosic biomass by acetic acid (HAc) hydrolysis, while the waste HAc was a problem to the environment. In this study, the main aim was to recover and reuse the waste HAc in XOS production. First, it was found that a temperature of 190 °C and a hydrolysis time of 60 min were favorable for XOS production by HAc hydrolysis, and the by-products xylose and furfural were the main inhibitors, hindering the reuse of the waste HAc.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India - 603202.
Pesticide contamination in wastewater poses a significant environmental challenge, driven by extensive agricultural use. This study evaluates the removal of chlorpyrifos (CPS) using sugarcane bagasse-based biochar alginate beads in a continuous fixed-bed adsorption column, achieving a remarkable 95-98% removal efficiency. Compared to conventional adsorbents like activated carbon, which typically show CPS adsorption capacities ranging from 50-70 mg g⁻ under similar conditions, the biochar alginate beads demonstrate better performance with a sorption capacity of 91.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemistry, Banasthali Vidhyapith, Banasthali, Rajasthan, 304022, India.
Plant extracts and bacterial biofilm are acknowledged to offer impressive corrosion-inhibitory activities. However, anticorrosive properties of their combination are still less reported. Thus, in the present study, we aimed to evaluate the corrosion inhibition efficiency of Saccharum officinarum bagasse (SOB) plant extract, Pseudomonas chlororaphis (P.
View Article and Find Full Text PDFCurr Res Microb Sci
December 2024
Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun 248005, Uttarakhand, India.
The challenges of pollution and agro-industrial waste management have led to the development of bioconversion techniques to transform these wastes into valuable products. This has increased the focus on the sustainable and cost-efficient production of biosurfactants from agro-industrial waste. Hence, the present study investigates the production of sophorolipid biosurfactants using the yeast strain IIPL32 under submerged fermentation, employing sugarcane bagasse hydrolysate-a renewable, low-cost agro-industrial waste as the feedstock.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Soil Science, University of Tehran, Tehran, Iran.
Soil compaction is a pressing issue in agriculture that significantly hinders plant growth and soil health, necessitating effective strategies for mitigation. This study examined the effects of sugarcane bagasse, both in its raw form and as biochar, along with biological activators (Bacillus simplex UTT1 and Phanerochaete chrysosporium) on soil characteristics and corn (Zea mays L.) plant biomass in a compacted soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!