Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Currently, there are available a few simple analytical approximations to the complex effective refractive index that may be used for nanofluids. Namely, the Maxwell Garnett mixing formula with scattering corrections, the Maxell Garnett Mie approximation, the Foldy-Lax approximation and the small particle limit of the quasi-crystalline approximation. These approximations are valid either for very small nanoparticles (below a few nanometers in radius) or for very dilute nanofluids (below about 1% in particles' volume fractions) and therefore, do not cover the whole domain of particle suspensions referred to as nanofluids. Here we propose a new simple analytical approximation based on local field corrections to the Foldy-Lax approximation. The new mixing formula coincides with the mentioned approximations when they are expected to be valid and provides physically sound predictions when the mentioned approximations are no longer valid, within the realm of nanofluids. We compare predictions of the analytical approximations considered in this work with experimental data published earlier for nanofluids of polystyrene in water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.028048 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!