A multi-layer solar radiative transfer (RT) scheme is proposed to deal with the vertical variation of inherent microphysical properties of clouds in this study. The exponential expressions are used to represent the vertical variation of optical properties caused by inhomogeneous microphysical properties. A perturbation method, coupled with the Eddington approximation, is used to solve the RT equation. In order to have a more accurate estimation of reflectance/transmittance for every single layer, the optical properties are adjusted following the theory of delta scaling in the proposed scheme. In addition, a modified adding method based on Chandrasekhar's invariance principle is introduced to solve the multi-layer RT. The accuracy of the proposed scheme is investigated by comparing the reflectance/absorptance to the benchmark for two double-layer cases, and each layer with vertically inhomogeneous optical properties. Results show that the bias related to vertically inhomogeneous optical properties reaches 13.8 % for reflectance and 29.2 % for absorptance while the bias of the proposed scheme is only -0.8 % for reflectance and 1.7 % for absorptance. We also apply the proposed scheme as well as the conventional Eddington approximation to the CanadianClimate Center RT model which handle RT in CanAM4. The calculations are performed in the following four solar wavenumber bands 2500-4200, 4200-8400, 8400-14500 and 14500-50000 cm . The result also shows that the proposed scheme also improved the accuracy in both flux and heating rate calculation by taking the vertical variation of inherent microphysical properties into account. The proposed scheme is approximately three times more computationally expensive compared to the Eddington approximation when we only consider the algorithm itself. The computational time is doubled compared to the Eddington approximation when we take the complete radiative transfer process into account. Due to its accuracy and efficiency, the proposed scheme is suitable to improve the RT calculations regarding the vertical variation of inherent microphysical properties in climate models.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.0A1569DOI Listing

Publication Analysis

Top Keywords

proposed scheme
28
vertical variation
20
microphysical properties
20
variation inherent
16
inherent microphysical
16
optical properties
16
eddington approximation
16
radiative transfer
12
properties
9
multi-layer solar
8

Similar Publications

Design of integrated radar and communication system based on solvable chaotic signal.

Sci Rep

December 2024

Shaanxi Key Laboratory of Complex System Control and Intelligent Informantion Processing, Xi'an University of Technology, Xi'an 710048, China.

In the integrated radar and communication system (IRCS), the design of signal that can simultaneously satisfy the radar detection and communication transmission is very important and difficult. Recently, some new properties of a class of solvable chaotic system have been studied for wireless applications, such as low bit error rate (BER) wireless communications and low cost target detection. In this paper, a novel IRCS based on the chaotic signal is proposed, and the performance of proposed scheme is analyzed.

View Article and Find Full Text PDF

Reservoir-operation optimisation is a crucial aspect of water-resource development and sustainable water process management. This study addresses bi-objective optimisation problems by proposing a novel crossover evolution operator, known as the hybrid simulated binary and improved arithmetic crossover (SBAX) operator, based on the simulated binary cross (SBX) and arithmetic crossover operators, and applies it to the Non-dominated Sorting Genetic Algorithms-II (NSGA-II) algorithm to improve the algorithm. In particular, the arithmetic crossover operator can obtain an optimal solution more precisely within the solution space, whereas the SBX operator can explore a broader range of potential high-quality solutions.

View Article and Find Full Text PDF

In this article, a nonlinear fractional bi-susceptible [Formula: see text] model is developed to mathematically study the deadly Coronavirus disease (Covid-19), employing the Atangana-Baleanu derivative in Caputo sense (ABC). A more profound comprehension of the system's intricate dynamics using fractional-order derivative is explored as the primary focus of constructing this model. The fundamental properties such as positivity and boundedness, of an epidemic model have been proven, ensuring that the model accurately reflects the realistic behavior of disease spread within a population.

View Article and Find Full Text PDF

Unlabelled: Cladribine indirectly downregulates methylation of DNA, RNA, and histones by blocking the transfer of methyl groups from -adenosyl-methionine. The cladribine and rituximab combination showed a synergetic effect in treating B-cell lymphomas. Bortezomib (Velcade) is a Food and Drug Administration (FDA)-approved proteasome inhibitor for treating mantle cell lymphoma (MCL).

View Article and Find Full Text PDF

Carbon emissions from land-use change have accounted for approximately one-third of global carbon emissions since the 21st century. As an effective planning tool for climate change mitigation at the city scale, low-carbon zoning governance has become a hot topic in the global academic community. However, despite increasingly relevant research, this field suffers from weak foundations, single research perspectives, and limited methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!