Light influenced by the turbulent ocean can be fully characterized with the help of the power spectrum of the water's refractive index fluctuations, resulting from the combined effect of two scalars, temperature and salinity concentration advected by the velocity field. The Nikishovs' model [ Fluid Mech. Res.27, 8298 (2000)] frequently used in the analysis of light evolution through the turbulent ocean channels is the linear combination of the temperature spectrum, the salinity spectrum and their co-spectrum, each being described by an approximate expression developed by Hill [ J. Fluid Mech.88, 541562 (1978)] in the first of his four suggested models. The fourth of the Hill's models provides much more precise power spectrum than the first one expressed via a non-linear differential equation that does not have a closed-form solution. We develop an accurate analytic approximation to the fourth Hill's model valid for Prandtl/Schmidt numbers in the interval [3, 3000] and use it for the development of a more precise oceanic power spectrum. To illustrate the advantage of our model, we include numerical examples relating to the spherical wave scintillation index evolving in the underwater turbulent channels with different average temperatures, and, hence, different Prandtl numbers for temperature and different Schmidt numbers for salinity. Since our model is valid for a large range of Prandtl number (or/and Schmidt number), it can be readily adjusted to oceanic waters with seasonal or extreme average temperature and/or salinity or any other turbulent fluid with one or several advected quantities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.027807 | DOI Listing |
Sci Rep
December 2024
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA.
Quantum computers promise a qualitative speedup in solving a broad spectrum of practical optimization problems. The latter can be mapped onto the task of finding low-energy states of spin glasses, which is known to be exceedingly difficult. Using D-Wave's 5000-qubit quantum processor, we demonstrate that a recently proposed iterative cyclic quantum annealing algorithm can find deep low-energy states in record time.
View Article and Find Full Text PDFSci Rep
December 2024
Cancer Epidemiology Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Bruce B. Downs Blvd, Tampa, FL, 33612, USA.
An archetype signal dependent noise (SDN) model is a component used in analyzing images or signals acquired from different technologies. This model-component may share properties with stationary normal white noise (WN). Measurements from WN images were used as standards for making comparisons with SDN in both the image domain (ID) and Fourier domain (FD).
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China. Electronic address:
As the proportion of solar energy in the global energy mix increases, photovoltaic cells have emerged as one of the fastest-growing technologies in the renewable energy sector. However, photovoltaics utilize only a limited portion of the incident solar spectrum, resulting in significant amounts of light energy being wasted as heat. This excess heat raises the surface temperature of photovoltaic cells, which in turn reduces their overall efficiency.
View Article and Find Full Text PDFProtein Sci
January 2025
Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain.
The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disruption of TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of host-oriented broad-spectrum antivirals with low susceptibility to resistance. TSG101 is a challenging target characterized by an extended and flat binding interface, low affinity for PTAP ligands, and complex binding energetics.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400094, India.
We present a comprehensive overview of the commissioning process and initial results of a synchrotron beamline dedicated to atomic, molecular, and optical sciences at the BL-5 undulator port of the Indus-2 synchrotron facility, Raja Ramanna Center for Advanced Technology, Indore, India. The beamline delivers a photon flux of ∼1012 photons/s with high resolving power (∼10 000) over an energy range of 6-800 eV, making it suitable for high-resolution spectroscopy in atomic, molecular, and optical science. The energy tunability from vacuum ultraviolet to soft x-ray (6-800 eV) is achieved through a varied line spacing plane grating monochromator with four gratings: very low energy (VLEG), low energy (LEG), medium energy (MEG), and high energy (HEG).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!