We modified our 910-m long path THz system to increase the signal-to-noise ratio (S/N) with a nanostructure plasmonic THz transmitter (Tx) chip and a seven-mirror array reflector with 1 m diameter. When the THz pulse propagates the 910-m distance in the atmosphere, the S/N is up to 1170:1, which made the THz pulse measurable at a high water vapor density (WVD) of up to 25.2 g/m. The time shift of the THz pulse according to the WVD measured for each meteorological season was matched well with the theoretical result. Due to the modified long-distance THz system, we were able to measure for the first time the resonances of NO gas, which is located 455 m away from the Tx and receiver (Rx) chips and contained in a 1.5-m diameter rubber balloon under atmospheric pressure. Seven resonances can be detected except for one overlay of resonant frequency by water vapor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.027514 | DOI Listing |
Sci Rep
January 2025
Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
We report a nonlinear terahertz (THz) detection device based on a metallic bull's-eye plasmonic antenna. The antenna, fabricated with femtosecond laser direct writing and deposited on a nonlinear gallium phosphide (GaP) crystal, focuses incoming THz waveforms within the sub-wavelength bull's eye region to locally enhance the THz field. Additionally, the plasmonic structure minimizes diffraction effects allowing a relatively long interaction length between the transmitted THz field and the co-propagating near-infrared gating pulse used in an electro-optic sampling configuration.
View Article and Find Full Text PDFSci Rep
January 2025
THz-Photonics Group, Institut für Hochfrequenztechnik, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
Space division multiplexing (SDM) with Hermite Gaussian (HG) modes, for instance, can significantly boost the transmission link capacity. However, SDM is not suitable in existing single mode fiber networks, and in long-distance wireless, microwave, THz or optical links, the far-field beam distribution may present a problem. Recently it has been demonstrated, that time domain HG modes can be employed to enhance the link capacity.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
November 2024
University of Arkansas, Department of Electrical Engineering and Computer Science, Fayetteville, Arkansas, United States.
Nanophotonics
April 2024
Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France.
Spintronic terahertz emitters (STEs), based on optical excitation of nanometer thick ferromagnetic/heavy metal (FM/HM) heterojunctions, have become important sources for the generation of terahertz (THz) pulses. However, the efficiency of the optical-to-THz conversion remains limited. Although optical techniques have been developed to enhance the optical absorption, no investigations have studied the application of THz cavities.
View Article and Find Full Text PDFNanophotonics
August 2024
Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
Photonics offers unique capabilities for quantum information processing (QIP) such as room-temperature operation, the scalability of nanophotonics, and access to ultrabroad bandwidths and consequently ultrafast operation. Ultrashort pulse sources of quantum states in nanophotonics are an important building block for achieving scalable ultrafast QIP; however, their demonstrations so far have been sparse. Here, we demonstrate a femtosecond biphoton source in dispersion-engineered periodically poled lithium niobate nanophotonics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!