Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Optical concentration can improve the efficiency and reduce the cost of photovoltaic power but has traditionally been too bulky, massive, and unreliable for use in space. Here, we explore a new ultra-compact and low-mass microcell concentrating photovoltaic (µCPV) paradigm for space based on the monolithic integration of transfer-printed microscale solar cells and molded microconcentrator optics. We derive basic bounds on the compactness as a function of geometric concentration ratio and angular acceptance, and show that a simple reflective parabolic concentrator provides the best combination of specific power, angular acceptance, and overall fabrication simplicity. This architecture is simulated in detail and validated experimentally with a µCPV prototype that is less than 1.7 mm thick and operates with six, 650 µm square triple-junction microcells at a geometric concentration ratio of 18.4×. In outdoor testing, the system achieves a terrestrial power conversion efficiency of 25.8 ± 0.2% over a ±9.5° angular range, resulting in a specific power of approximately 111 W/kg. These results lay the groundwork for future space µCPV systems and establish a realistic path to exceed 350 W/kg specific power at >33% power conversion efficiency by scaling down to even smaller microcells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.0A1467 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!