Strong-field photoelectron holography (SFPH), originating from the interference of the direct electron and the rescattering electron in tunneling ionization, is a significant tool for probing structure and electronic dynamics in molecules. We theoretically study SFPH by counter rotating two-color circularly (CRTC) polarized laser pulses. Different from the case of the linearly polarized laser field, where the holographic structure in the photoelectron momentum distribution (PEMD) is clustered around the laser polarization direction, in the CRTC laser fields, the tunneling ionized electrons could recollide with the parent ion from different angles and thus the photoelectron hologram appears in the whole plane of laser polarization. This property enables structural information delivered by the electrons scattering the molecule from different angles to be recorded in the two-dimensional photoelectron hologram. Moreover, the electrons tunneling at different laser cycles are streaked to different angles in the two-dimensional polarization plane. This property enables us to probe the sub-cycle electronic dynamics in molecules over a long time window with the multiple-cycle CRTC laser pulses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.032193 | DOI Listing |
In this Letter, we propose and experimentally validate a high-fidelity and adaptive forward-phase-based vibration sensing using a Wiener filter (WF). In commercial coherent digital subcarrier multiplexing (DSCM) systems under external cavity lasers (ECLs), frequency-domain pilot tones (FPTs) in subcarrier intervals are employed for dynamic frequency offset estimation (FOE), carrier phase estimation (CPE), and polarization demultiplexing. The phase estimated by the CPE module is processed with the WF to achieve high-fidelity extraction of the vibration-induced phase.
View Article and Find Full Text PDFAn intelligent controlled spatiotemporal mode-locked (STML) fiber laser based on a photonic lantern (PL) is proposed and experimentally demonstrated. A pair of in-house developed PLs is spliced into the cavity in a back-to-back structure. This PL-based structure functions as a mode multiplexer/demultiplexer to generate higher-order spatial modes.
View Article and Find Full Text PDFA 1645 nm end-pumped dual-channel Er:YAG vector laser that could generate two cylindrical vector (CV) beams simultaneously with different polarization orders is demonstrated. The laser is designed in a two-arm structure, wherein each arm places a q-plate (QP) to introduce intra-cavity spin-orbital angular momentum conversion, leading to the oscillation of two various CV modes in two arms, and finally output along two directions, respectively. The favorable experimental results illustrate high power stability and polarization mode purity.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, Saitama University, Saitama City, Saitama 338-8570, Japan.
Rate coefficients for ion-polar-molecule reactions between acetonitrile molecules (CHCN) and nitrogen molecular ions (N), which are of importance to the upper atmospheric chemistry of Saturn's moon Titan, were measured for the first time at low translational temperatures. In the experiments, the reaction between sympathetically cooled N ions embedded in laser-cooled Ca Coulomb crystals and velocity-selected acetonitrile molecules generated using a wavy Stark velocity filter was studied to determine the reaction rate coefficients. Capture rate coefficients calculated by the Su-Chesnavich approach and by the perturbed rotational state theory considering the rotational state distribution of CHCN were compared to the experimental rate coefficients.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
Improved birefringence, given its capacity to modulate polarized light, holds a lively role in the optoelectronic industry. Traditionally, alkaline-earth metal halides have possessed low birefringence due to their nearly optical isotropic properties. Herein, the substitution of interlayer anion with linear S─S unit that meticulously engineered by reduced valence state and strong covalent bond is integrated into the optically isotropic BaF, offering the new salt-inclusion chalcogenide BaFS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!