Graphene is widely recognized as an outstanding and multi-functional material in various application fields such as electronics, photonics, mechanics, and life sciences. We propose a neurotransmitter sensor with ultra-small volume for detecting the photonic light-matter response. Such detection can be achieved using surface-activated monolayer graphene sheets and CMOS-compatible silicon-photonic circuits. Patterned pieces of CVD-grown graphene are integrated on the top of a silicon micro-ring resonator, which induce the adsorption of catecholamine molecules originated from the π-stacking effect. We used dopamine to demonstrate such detection and examine the sensitivity of graphene-dopamine coupling. To avoid high optical insertion loss and degradation of resonance characteristics caused by a graphene's extremely high optical absorption coefficient in the near infrared region, a ring resonator with adjusted coupling design is used to compensate for the drawbacks. Owing to the advanced nano-sensing platform and measurement system, an activated graphene-sensing surface of only ∼30 µm/ch enables π coupling to dopamine with enough sensitivity to detect less than 10-µM solution concentration. The detection mechanism through the surface reaction is also verified by optical simulation and atomic force microscopy measurement, revealing that the flowing dopamine molecules can only occupy the outermost surface of graphene. We expect this sensor to contribute to the development of an innovative label-free and disposable bio-sensing platform with accurate, sensitive, and fast response.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.032058DOI Listing

Publication Analysis

Top Keywords

high optical
8
dopamine
4
dopamine detection
4
detection activated
4
activated reaction
4
reaction field
4
field consisting
4
consisting graphene-integrated
4
graphene-integrated silicon
4
silicon photonic
4

Similar Publications

Strong interaction between plasmon and topological surface state in BiSe/CuS nanowires for solar-driven photothermal applications.

Sci Adv

March 2025

Department of Physics and Guangdong Basic Research Center of Excellence for Quantum Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.

Developing high-performance photothermal materials and unraveling the underlying mechanism are essential for photothermal applications. Here, photothermal performance improved by strong interaction between plasmon and topological surface state (TSS) is demonstrated in BiSe/CuS nanowires. This hybrid, which CuS nanosheets were grown on BiSe nanowires, leverages the plasmon resonance and TSS-induced optical property, generating wide and efficient light absorption.

View Article and Find Full Text PDF

Dual-filament regulation of relaxation in mammalian fast skeletal muscle.

Proc Natl Acad Sci U S A

March 2025

Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, United Kingdom.

Muscle contraction is driven by myosin motors from the thick filaments pulling on the actin-containing thin filaments of the sarcomere, and it is regulated by structural changes in both filaments. Thin filaments are activated by an increase in intracellular calcium concentration [Ca] and by myosin binding to actin. Thick filaments are activated by direct sensing of the filament load.

View Article and Find Full Text PDF

Electricity-Efficient On-Demand Photothermal Activation for Tunable Thermochromic Windows.

Nano Lett

March 2025

National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.

Thermochromic (TC) windows with passively controlled sunlight regulation have demonstrated significant building energy conservations. Realizing the active control of the TC window can expand its popularity while remaining an intractable challenge. Herein, a low-power-dissipative strategy that endows TC windows with an actively tunable transmittance is presented through the electro-induced tunable photothermal conversions (ETPCs).

View Article and Find Full Text PDF

Raman spectroscopy has demonstrated significant potential in molecular detection, analysis, and identification, particularly when it adopts single-molecule surface-enhanced Raman scattering (SM-SERS) substrates. A recent SM-SERS scheme incorporates two-fold Raman enhancement mechanisms: the electromagnetic enhancement enabled by a plasmonic nanogap hotspot formed from gold sphere nanoparticles sitting on a gold mirror and the chemical enhancement enabled by a two-dimensional material, WS, inserted into the nanogap. In this work we integrate multiple advanced concepts and techniques to achieve remarkable performance improvements of SM-SERS.

View Article and Find Full Text PDF

Glass-confined carbon dots: transparent afterglow materials with switchable TADF and RTP.

Nanoscale

March 2025

Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China.

The confined synthesis of carbon dots (CDs) in solid matrixes is a promising avenue for developing new afterglow materials. Benefiting from the advantages of the sol-gel preparation of nanoporous glass, we report transparent glass-confined CDs with tunable afterglow luminescence. Switchable thermally-activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) of CDs were achieved by adjusting the sintering temperature and ion doping.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!