Evaporating sessile droplets have been known to exhibit oscillations on the air-liquid interface. These are generally over millimeter scales. Using a novel approach, we are able to measure surface height changes of 500 nm amplitude using optical trapping of a set of microscopic particles at the interface, particularly when the vertical thickness of the droplet reduces to less than 50 m. We find that at the later stages of the droplet evaporation, particularly when the convection currents become large, the top air-water interface starts to spontaneously oscillate vertically as a function of time in consistency with predictions. We also detect travelling wave trains moving in the azimuthal direction of the drop surface which are consistent with hydrothermal waves at a different combination of Reynolds, Prandtl and Evaporation numbers than previously observed. This is the first time that wave-trains have been observed in water, being extremely challenging to detect both interferometrically and with infra-red cameras. We also find that such waves apply a force parallel to the interface along the propagation direction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.031900 | DOI Listing |
Mater Horiz
January 2025
Soft Matter Lab, Department of Chemical Engineering, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida, 201314, India.
This study focuses on fabricating photonic crystals (PCs) by surfactant-based particle capture at the gas-liquid interface of evaporating sessile droplets. The captured particles form interfacial films, resulting in ordered monolayer depositions manifesting iridescent structural colors. The particle dynamics behind the ordered arrangement is delineated.
View Article and Find Full Text PDFLangmuir
January 2025
Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin 300134, China.
Self-cleaning applications based on bionic surface designs requires an in-depth understanding of unique and complex wetting and evaporation processes of sessile droplets on natural biosurfaces. To this end, hydrophobic bamboo and Kalanchoe blossfeldiana leaves are excellent candidates for self-cleaning applications, but various properties, such as the heat and mass transfer processes during evaporation, remain unknown. Here, the dynamics of contact angle, radius, and heat and mass transfer during evaporation of sessile droplets on bamboo and Kalanchoe blossfeldiana leaves with roughness in the range 2.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, QLD 4111, Australia.
The evaporation dynamics of sessile droplets on re-entrant microstructures are critical for applications in microfluidics, thermal management, and self-cleaning surfaces. Re-entrant structures, such as mushroom-like shapes with overhanging features, trap air beneath droplets to enhance non-wettability. The present study examines the evaporation of a water droplet on silicon carbide (SiC) and silicon dioxide (SiO) re-entrant structures, focusing on the effects of material composition and solid area fraction on volume reduction, contact angle, and evaporation modes.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
In nature, engineering technology and daily life, wetting phenomena are widespread and have essential roles and significance. Bionics is becoming increasingly important nowadays and exploring the mechanism that influences biomimetic surface microstructure on droplet wetting process and heat and mass transfer characteristics is becoming more meaningful. In this paper, based on photolithography technology, SU-8 photoresist was used as raw material to prepare biomimetic surfaces with microstructures in various arrangements.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, 37673, Republic of Korea.
The evaporation of drops on solid surfaces is a ubiquitous natural phenomenon, and their dynamics play a pivotal role in many biological, environmental, and industrial processes. However, the complexity of the underlying mechanisms has largely confined previous studies to liquid drop evaporation under atmospheric conditions. In this study, the first comprehensive investigation of the evaporation dynamics of conducting polymer-containing drops under controlled vacuum environments is presented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!