We present an optical parametric chirped pulse amplifier (OPCPA) delivering 10.5 mJ pulses with durations down to 220 fs, at 100 Hz repetition rate, centered at 1550 nm. The system is pumped by a picosecond Nd:YAG amplifier at 1064 nm based on quasi-continuous-wave diode pumping and seeded by a femtosecond mode-locked Er fiber laser at 1550 nm. This choice of wavelengths enables the use of well-established technology and optical components for both pump and signal beams, resulting in a straightforward and robust system design and the ability for further power scaling to be used in high-energy laser-produced plasma experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.029829DOI Listing

Publication Analysis

Top Keywords

optical parametric
8
parametric chirped
8
chirped pulse
8
pulse amplifier
8
105 pulses
8
amplifier producing
4
producing ultrashort
4
ultrashort 105
4
pulses 155
4
155 μm
4

Similar Publications

Terahertz (THz) parametric detection is a highly sensitive method that upconverts a THz wave into a near-infrared beam for detection. Lithium niobate has primarily been used as the nonlinear optical crystal in this approach. However, the frequency band with high parametric gain is limited, leading to increasing interest in other nonlinear optical crystals.

View Article and Find Full Text PDF

Atoms in Rydberg states are an important building block for emerging quantum technologies. While excitation to Rydberg orbitals is typically achieved in more than tens of nanoseconds, the physical limit is in fact much faster, at the ten picoseconds level. Here, we tackle such ultrafast Rydberg excitation of a rubidium atom by designing a dedicated pulsed laser system generating 480 nm pulses of 10 ps duration.

View Article and Find Full Text PDF

Anti-ambipolar transistors (AAT) are considered as a breakthrough technology in the field of electronics and optoelectronics, which is not only widely used in diverse logic circuits, but also crucial for the realization of high-performance photodetectors. The anti-ambipolar characteristics arising from the gate-tunable energy band structure can produce high-performance photodetection at different gate voltages. As a result, this places higher demands on the parametric driving range (ΔVg) and peak-to-valley ratio (PVR) of the AAT.

View Article and Find Full Text PDF

Polymer-dispersed liquid crystals (PDLCs) stand at the intersection of polymer science and liquid crystal technology, offering a unique blend of optical versatility and mechanical durability. These composite materials are composed of droplets of liquid crystals interspersed in a matrix of polymeric materials, harnessing the optical properties of liquid crystals while benefiting from the structural integrity of polymers. The responsiveness of LCs combined with the mechanical rigidity of polymers make polymer/LC composites-where the polymer network or matrix is used to stabilize and modify the LC phase-extremely important for scientists developing novel adaptive optical devices.

View Article and Find Full Text PDF

We present a comprehensive analysis of the optical attributes of graphene sheets with charge carriers residing on a curved substrate. In particular, we focus on the fascinating case of Beltrami geometry and provide an explicit parametrization for this curved two-dimensional surface. By employing the massless Dirac description that is characteristic of graphene, we investigate the impact of the curved geometry on the optical properties within the sample.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!