Laser wakefield accelerators have emerged as a promising candidate for compact synchrotron radiation and even x-ray free electron lasers. Today, to make the electrons emit electromagnetic radiation, the trajectories of laser wakefield accelerated electrons are deflected by transverse wakefield, counter-propagating laser field or external permanent magnet insertion device. Here, we propose a novel type of undulator that has a period of a few hundred microns and a magnetic field of tens of Tesla. The undulator consists of a bifilar capacitor-coil target that sustains a strong discharge current that generates a helical magnetic field around the coil axis when irradiated by a high-energy laser. Coupling this undulator with state-of-the-art laser wakefield accelerators can, simultaneously, produce ultra-bright quasi-monochromatic x-rays with tunable energy ranging 5-250 keV and optimize the free electron laser parameter and gain length compared with a permanent magnet-based undulator. This concept may pave a path toward ultra-compact synchrotron radiation and even x-ray free electron lasers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.029676 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!