Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aging is associated with insulin resistance and the development of type 2 diabetes. While this process is multifaceted, age-related changes to skeletal muscle are expected to contribute to impaired glucose metabolism. Some of these changes include sarcopenia, impaired insulin signaling, and imbalances in glucose utilization. Endurance and resistance exercise training have been endorsed as interventions to improve glucose tolerance and whole-body insulin sensitivity in the elderly. While both types of exercise generally increase insulin sensitivity in older adults, the metabolic pathways through which this occurs can differ and can be dependent on preexisting conditions including obesity and type 2 diabetes. In this review, we will first highlight age-related changes to skeletal muscle which can contribute to insulin resistance, followed by a comparison of endurance and resistance training adaptations to insulin-stimulated glucose metabolism in older adults.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6893763 | PMC |
http://dx.doi.org/10.3390/nu11112636 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!