Cytotoxicity of Deoxynivalenol after Being Exposed to Gaseous Ozone.

Toxins (Basel)

Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an 223300, China.

Published: November 2019

In this study, deoxynivalenol (DON) in aqueous solution was exposed to gaseous ozone for periods ranging from 0 to 20 min. The degradation efficiency and cytotoxicity of DON were investigated after being treated by ozone. The results showed that DON was rapidly degraded from 10.76 ± 0.09 mg/L to 0.22 ± 0.04 mg/L within 15 min ( < 0.05), representing a reduction of 97.95%, and no DON was detected after being exposed to 14.50 mg/L of ozone at a flow rate of 80 mL/min for 20 min. The degradation of DON depended on the ozone exposure time, and followed the first-order kinetic model ( = 0.9972). Human hepatic carcinoma (HepG2) and Henrietta Lacks (Hela) cells were used to evaluate the cytotoxicity of DON treated by ozone using the 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The half-maximal inhibitory concentrations (IC) values of DON on HepG2 and Hela cells were 2.10 and 1.33 mg/L after 48 h of exposure, respectively, and showed a dose-dependent manner. The cell vitalities of HepG2 and Hela cells on DON were both evidently improved after being exposed to ozone for 15 min, and there were no significant differences between the negative control and that treated at 20 min of ozone exposure. Gaseous ozone can potentially be used as a new method to detoxify DON in agricultural products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891369PMC
http://dx.doi.org/10.3390/toxins11110639DOI Listing

Publication Analysis

Top Keywords

gaseous ozone
12
hela cells
12
ozone
9
don
9
exposed gaseous
8
min degradation
8
cytotoxicity don
8
treated ozone
8
ozone exposure
8
hepg2 hela
8

Similar Publications

Bactericidal efficacy of low dose gaseous ozone against clinically relevant multidrug-resistant bacteria.

Front Microbiol

December 2024

Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, United States.

Introduction: Healthcare-associated infections (HAIs) pose a significant challenge in acute care hospitals, particularly in intensive care units, due to persistent environmental contamination despite existing disinfection protocols and manual cleaning methods. Current disinfection methods are labor-intensive and often ineffective against multidrug-resistant (MDR) pathogens, highlighting the need for new, automated, hands-free approaches.

Methods: This study evaluates the bactericidal efficacy of low concentrations of gaseous ozone (5 ppm) against clinically relevant and often MDR bacteria under various concentrations, contact times, temperatures, and environmental conditions.

View Article and Find Full Text PDF

Environmental contamination with biofilm can be a source of healthcare-associated infections. Disinfection with various biocidal active substances is usually the method of choice to remove contamination with biofilm. In this study we tested 13 different disinfection protocols using gaseous ozone, citric acid, and three working concentrations of benzalkonium chloride-based professional disinfecting products on 24-hour-old biofilms formed by two strains on ceramic tiles.

View Article and Find Full Text PDF

The selective oxidation of NH-N into dinitrogen (N) is still a challenge. Currently, traditional advanced oxidation processes often involve in the chlorine free radicals to increase the selectivity of NH-N oxidation products towards N but is usually accompanied by the production of many toxic disinfection by-product. Herein, we reported a novel catalytic ozonation system (UV/O/MgO/NaSO) for selective NH-N oxidation based on the reducing capability and photochemical properties of NaSO.

View Article and Find Full Text PDF

Background: Environmental factors have been identified as primary risk factors for type 2 diabetes mellitus (T2DM). However, studies on the association between environmental factors and T2DM have mainly focused on morbidity and mortality, which do not fully reflect the disease burden stemming from air pollution. Therefore, we aimed to evaluate the correlation between air pollution and T2DM, including hospital length of stay (LOS) and costs.

View Article and Find Full Text PDF

Air pollution is a pervasive global challenge with profound implications for public health. This review explores the intricate relationship between air pollution and atrial fibrillation (AF), a prevalent cardiac arrhythmia associated with significant morbidity and mortality. Drawing on a comprehensive analysis of the existing literature, this review synthesizes current evidence linking various air pollutants, including particulate matter, nitrogen dioxide, ozone, and carbon monoxide, to the development and exacerbation of AF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!