A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of Sea Level Nonlinear Trends around Shandong Peninsula from Satellite Altimetry. | LitMetric

Prediction of Sea Level Nonlinear Trends around Shandong Peninsula from Satellite Altimetry.

Sensors (Basel)

College of Ocean and Space Information, China University of Petroleum (East China), Qingdao 266580, China.

Published: November 2019

Sea level change is a key indicator of climate change, and the prediction of sea level rise is one of most important scientific issues. In this paper, the gridded sea level anomaly (SLA) data from satellite altimetry are used to analyze the sea level variations around Shandong Peninsula from 1993 to 2016. Based on the Complete Ensemble Empirical Mode Decomposition (CEEMD) method and Radial Basis Function (RBF) network, the paper proposes an improved sea level multi-scale prediction approach, namely, CEEMD-RBF combined model. Firstly, the multi-scale frequency oscillatory modes (intrinsic mode functions (IMFs)) representing different oceanic processes are extracted by CEEMD from the highest frequency to the lowest frequency oscillating mode. Secondly, RBF network is used to establish prediction models for various IMF components to predict their future trends, and each IMF is used as an input factor of the RBF network separately. Finally, the prediction results of each IMF component with RBF network are reconstructed to obtain the final predictions of sea level anomalies. The results shows that CEEMD is particularly suitable for analyzing nonlinear and non-stationary time series and RBF network is applicable for regional sea level prediction at different scales.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864553PMC
http://dx.doi.org/10.3390/s19214770DOI Listing

Publication Analysis

Top Keywords

sea level
32
rbf network
20
prediction sea
8
level
8
shandong peninsula
8
satellite altimetry
8
sea
7
prediction
6
rbf
5
network
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!