PCL-ZnO/TiO/HAp Electrospun Composite Fibers with Applications in Tissue Engineering.

Polymers (Basel)

Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, RO-011061 Bucharest, Romania.

Published: November 2019

The main objective of the tissue engineering field is to regenerate the damaged parts of the body by developing biological substitutes that maintain, restore, or improve original tissue function. In this context, by using the electrospinning technique, composite scaffolds based on polycaprolactone (PCL) and inorganic powders were successfully obtained, namely: zinc oxide (ZnO), titanium dioxide (TiO) and hydroxyapatite (HAp). The novelty of this approach consists in the production of fibrous membranes based on a biodegradable polymer and loaded with different types of mineral powders, each of them having a particular function in the resulting composite. Subsequently, the precursor powders and the resulting composite materials were characterized by the structural and morphological point of view in order to determine their applicability in the field of bone regeneration. The biological assays demonstrated that the obtained scaffolds represent support that is accepted by the cell cultures. Through simulated body fluid immersion, the biodegradability of the composites was highlighted, with fiber fragmentation and surface degradation within the testing period.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918332PMC
http://dx.doi.org/10.3390/polym11111793DOI Listing

Publication Analysis

Top Keywords

tissue engineering
8
pcl-zno/tio/hap electrospun
4
composite
4
electrospun composite
4
composite fibers
4
fibers applications
4
applications tissue
4
engineering main
4
main objective
4
objective tissue
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!