A Novel Capacitance-Based In-Situ Pressure Sensor for Wearable Compression Garments.

Micromachines (Basel)

Energy Harvesting and Vibrations Lab, Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Published: October 2019

This paper pertains to the development & evaluation of a dielectric electroactive polymer-based tactile pressure sensor and its circuitry. The evaluations conceived target the sensor's use case as an in-situ measurement device assessing load conditions imposed by compression garments in either static form or dynamic pulsations. Several testing protocols are described to evaluate and characterize the sensor's effectiveness for static and dynamic response such as repeatability, linearity, dynamic effectiveness, hysteresis effects of the sensor under static conditions, sensitivity to measurement surface curvature and temperature and humidity effects. Compared to pneumatic sensors in similar physiological applications, this sensor presents several significant advantages including better spatial resolution, compact packaging, manufacturability for smaller footprints and overall simplicity for use in array configurations. The sampling rates and sensitivity are also less prone to variability compared to pneumatic pressure sensors. The presented sensor has a high sampling rate of 285 Hz that can further assist with the physiological applications targeted for improved cardiac performance. An average error of ± 5.0 mmHg with a frequency of 1-2 Hz over a range of 0 to 120 mmHg was achieved when tested cyclically.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915609PMC
http://dx.doi.org/10.3390/mi10110743DOI Listing

Publication Analysis

Top Keywords

pressure sensor
8
compression garments
8
compared pneumatic
8
physiological applications
8
sensor
5
novel capacitance-based
4
capacitance-based in-situ
4
in-situ pressure
4
sensor wearable
4
wearable compression
4

Similar Publications

TiCT Composite Aerogels Enable Pressure Sensors for Dialect Speech Recognition Assisted by Deep Learning.

Nanomicro Lett

December 2024

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China.

Wearable pressure sensors capable of adhering comfortably to the skin hold great promise in sound detection. However, current intelligent speech assistants based on pressure sensors can only recognize standard languages, which hampers effective communication for non-standard language people. Here, we prepare an ultralight TiCT MXene/chitosan/polyvinylidene difluoride composite aerogel with a detection range of 6.

View Article and Find Full Text PDF

Leakage analysis and leakage monitoring system design for LNG tanker filling process.

Sci Rep

December 2024

PetroChina Kunlun Gas Co., Ltd. Sichuan Branch, Chengdu Sichua, China.

During the filling process of LNG tank trucks, due to the long-term operation of filling equipment in low temperature and high-pressure conditions, the sealing parts in the equipment are prone to failure, leading to leaks. The reasons for the leakage of LNG filling equipment were analyzed, and the diffusion of LNG after different equivalent leakage hole diameters and different wind speeds were numerically analyzed. A gas leak monitoring system suitable for LNG filling stations was established based on TDLAS technology.

View Article and Find Full Text PDF

Flexible micro-sensors have significant application potential in the field of sports performance evaluation. The aim of this study is to assess sports performance by grip pressure using a MMSS sensor (MXene as the sensitive material and melamine sponge as the substrate, a type of flexible piezoresistive pressure sensor). The grip pressures of expert and amateur players are evaluated in single skills events (golf, billiards, basketball, javelin and shot put) and in skills conversion (badminton and tennis).

View Article and Find Full Text PDF

The novel coronavirus (COVID-19) has affected more than two million people of the world, and far social distancing and segregated lifestyle have to be adopted as a common solution in recent years. To solve the problem of sanitation control and epidemic prevention in public places, in this paper, an intelligent disinfection control system based on the STM32 single-chip microprocessor was designed to realize intelligent closed-loop disinfection in local public places such as public toilets. The proposed system comprises seven modules: image acquisition, spraying control, disinfectant liquid level control, access control, voice broadcast, system display, and data storage.

View Article and Find Full Text PDF

All-polymer piezo-ionic-electric electronics.

Nat Commun

December 2024

Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

Piezoelectric electronics possess great potential in flexible sensing and energy harvesting applications. However, they suffer from low electromechanical performance in all-organic piezoelectric systems due to the disordered and weakly-polarized interfaces. Here, we demonstrated an all-polymer piezo-ionic-electric electronics with PVDF/Nafion/PVDF (polyvinylidene difluoride) sandwich structure and regularized ion-electron interfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!