Studies on the relationship between reactive oxygen species (ROS)/manganese superoxide dismutase (MnSOD) and sphingomyelinase (SMase) are controversial. It has been demonstrated that SMase increases the intracellular ROS level and induces gene expression for MnSOD protein. On the other hand, some authors showed that ROS modulate the activation of SMase. The human recombinant manganese superoxide dismutase (rMnSOD) exerting a radioprotective effect on normal cells, qualifies as a possible pharmaceutical tool to prevent and/or cure damages derived from accidental exposure to ionizing radiation. This study aimed to identify neutral SMase (nSMase) as novel molecule connecting rMnSOD to its radiation protective effects. We used a new, and to this date, unique, experimental model to assess the effect of both radiation and rMnSOD in the brain of mice, within a collaborative project among Italian research groups and the Joint Institute for Nuclear Research, Dubna (Russia). Mice were exposed to a set of minor γ radiation and neutrons and a spectrum of neutrons, simulating the radiation levels to which cosmonauts will be exposed during deep-space, long-term missions. Groups of mice were treated or not-treated (controls) with daily subcutaneous injections of rMnSOD during a period of 10 days. An additional group of mice was also pretreated with rMnSOD for three days before irradiation, as a model for preventive measures. We demonstrate that rMnSOD significantly protects the midbrain cells from radiation-induced damage, inducing a strong upregulation of nSMase gene and protein expression. Pretreatment with rMnSOD before irradiation protects the brain with a value of very high nSMase activity, indicating that high levels of activity might be sufficient to exert the rMnSOD preventive role. In conclusion, the protective effect of rMnSOD from radiation-induced brain damage may require nSMase enzyme.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862120 | PMC |
http://dx.doi.org/10.3390/ijms20215431 | DOI Listing |
Eur J Pharm Sci
July 2021
BioChem Laboratory, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, I-80131 Naples, Italy; Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, I-00136, Rome, Italy.
A new isoform of human manganese superoxide dismutase (SOD) has been recently isolated and obtained in a synthetic recombinant form and termed rMnSOD. As compared to other SODs, this isoform exhibits a dramatically improved cellular uptake and an intense antioxidant and antitumoral activity. Unfortunately, its use is severely hampered as this active pharmaceutical ingredient (API) in solution suffers from remarkable instability, which realizes as an interplay of unfolding and aggregation phenomena.
View Article and Find Full Text PDFInt J Mol Sci
May 2020
Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
Sphingomyelins (SMs) are a class of relevant bioactive molecules that act as key modulators of different cellular processes, such as growth arrest, exosome formation, and the inflammatory response influenced by many environmental conditions, leading to pyroptosis, a form of programmed cell death due to Caspase-1 involvement. To study liver pyroptosis and hepatic SM metabolism via both lysosomal acid SMase (aSMase) and endoplasmic reticulum/nucleus neutral SMase (nSMase) during the exposure of mice to radiation and to ascertain if this process can be modulated by protective molecules, we used an experimental design (previously used by us) to evaluate the effects of both ionizing radiation and a specific protective molecule (rMnSOD) in the brain in collaboration with the Joint Institute for Nuclear Research, Dubna (Russia). As shown by the Caspase-1 immunostaining of the liver sections, the radiation resulted in the loss of the normal cell structure alongside a progressive and dose-dependent increase of the labelling, treatment, and pretreatment with rMnSOD, which had a significant protective effect on the livers.
View Article and Find Full Text PDFInt J Mol Sci
October 2019
Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
Studies on the relationship between reactive oxygen species (ROS)/manganese superoxide dismutase (MnSOD) and sphingomyelinase (SMase) are controversial. It has been demonstrated that SMase increases the intracellular ROS level and induces gene expression for MnSOD protein. On the other hand, some authors showed that ROS modulate the activation of SMase.
View Article and Find Full Text PDFNeurochem Res
February 2019
Department of Neuroscience, Italian National Institute of Health, Rome, Italy.
We have recently isolated a new isoform of recombinant manganese superoxide dismutase (rMnSOD) which provides a potent antitumor activity and strongly counteracts the occurrence of oxidative stress and tissue inflammation. This isoform, in addition to the enzymatic action common to all SODs, also shows special functional and structural properties, essentially due to the presence of a first leader peptide that allows the protein to enter easily into cells. Among endogenous antioxidants, SOD constitutes the first line of natural defence against pathological effects induced by an excess of free radicals.
View Article and Find Full Text PDFRedox Biol
May 2018
Leadhexa Biotechnologies Inc., Belvedere, CA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!