The thermophysical properties of refrigerant can be modified via adding solid materials to it. In this paper, molecular simulations and thermodynamic calculations were employed to investigate the adsorption and energy storage of ethane (R170), 1,1,1,2-tetrafluoroethane (R134a), 1,1,1-trifluoroethane (R143a), and 1,1-difluoroethane (R152a) in metal organic framework (MOF)-5 nanoparticles. The results show that the fluorine atom in the refrigerants will strengthen the adsorption of refrigerants in MOF-5. However, the fluorine-free refrigerant, R170, owns larger enthalpy difference of desorption than the other refrigerants with fluorine under high pressure. The thermal energy storage capacity of the refrigerant/MOF-5 mixture is larger than that of the pure refrigerant at low pressure. Also, the negative enhancement of the energy storage property of the mixture is found in some cases when the refrigerant experiences phase transition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861881 | PMC |
http://dx.doi.org/10.3390/ma12213577 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!