A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unveiling fungal detoxification pathways of the cruciferous phytoalexin rapalexin A: Sequential L-cysteine conjugation, acetylation and oxidative cyclization mediated by Colletotrichum spp. | LitMetric

The metabolism of the phytoalexin rapalexin A, a unique indole isothiocyanate (ITC) produced by crucifers (family Brassicaceae), was investigated. Three phytopathogenic fungal species were examined: Colletotrichum dematium (Pers.:Fr.) Grove, a broad host range pathogen, C. higginsianum Sacc., a host-selective pathogen of crucifers and C. lentis Damm, a host-selective pathogen of lentils (Lens culinaris Medik.). The metabolism of rapalexin A by C. dematium and C. higginsianum was similar, taking place via one common intermediate and two divergent pathways, but C. lentis was unable to transform rapalexin A. Both C. higginsianum and C. dematium transformed rapalexin A to two previously undescribed metabolites, the structures of which were confirmed by chemical synthesis: N-acetyl-S-(8-methoxy-4H-thiazolo[5,4-b]indol-2-yl)-L-cysteine and 4-hydroxy-3-(4-methoxy-1H-indol-3-yl)-2-thioxothiazolidine-4-carboxylic acid. That is, both fungal pathogens metabolized and detoxified rapalexin A by addition of the thiol group of L-Cys residue to the isothiocyanate carbon of rapalexin A, a transformation usually catalyzed by glutathione transferases. Coincidentally, this metabolic pathway is employed by mammals and insects to detoxify isothiocyanates and other xenobiotics. Hence, C. higginsianum could be a useful model fungus to uncover genes involved in the detoxification pathways of ITCs and related xenobiotics. Our overall results suggest that increasing rapalexin A production in specific crucifers could increase crop resistance to certain fungal pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2019.112188DOI Listing

Publication Analysis

Top Keywords

detoxification pathways
8
rapalexin
8
phytoalexin rapalexin
8
host-selective pathogen
8
fungal pathogens
8
unveiling fungal
4
fungal detoxification
4
pathways cruciferous
4
cruciferous phytoalexin
4
rapalexin sequential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!