Background: A relationship exists between step width and energy expenditure, yet the contribution of dynamic stability to energy expenditure is not completely understood. Chronic obstructive pulmonary disease (COPD) patients' energy expenditure is increased due to airway obstruction. Further, they have a higher prevalence of falls and balance deficits compared to controls.

Research Question: Is dynamic stability different between COPD patients and controls; and is the association between dynamic stability and energy expenditure different between groups?

Methods: Seventeen COPD patients (64.3 ± 7.6years) and 23 controls (59.9 ± 6.6years) walked on a treadmill at three speeds: self-selected walking speed (SSWS), -20%SSWS, and +20%SSWS. Mean and variability (standard deviation) of the anterior-posterior (AP) and medio-lateral (ML) margins of stability (MOS) were compared between groups and speed conditions, while controlling for covariates. Additionally, their association to metabolic power was examined.

Results: The association between stability and power did not significantly differ between groups. However, increased metabolic power was associated with decreased MOS AP mean (p < 0.0001), independent of speed. Increased MOS AP variability (p = 0.01) and increased SSWS (p's < 0.05) were associated with increased metabolic power. The MOS ML mean for COPD patients was greater than that of healthy patients (p = 0.02). MOS AP mean decreased as speed increased and differed by group (p = 0.048). For COPD patients, a plateau was observed at SSWS and did not decrease further at +20%SSWS compared to controls. MOS AP variability (p < 0.0001), MOS ML mean (p < 0.0001), and MOS ML variability (p = 0.003) decreased as speed increased and did not differ by group.

Significance: Patients with COPD operate at the upper limit of their metabolic reserve due to an increased cost of breathing. To compensate for their lack of stability, they walked with larger margins of stability in the ML direction, instead of changing the stability margins in the AP direction, due to its association with energy expenditure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889081PMC
http://dx.doi.org/10.1016/j.gaitpost.2019.10.025DOI Listing

Publication Analysis

Top Keywords

energy expenditure
20
dynamic stability
12
chronic obstructive
8
obstructive pulmonary
8
pulmonary disease
8
stability energy
8
copd patients
8
metabolic power
8
stability
7
energy
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!