Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease caused by the lack of dystrophin in muscle fibers that is currently without curative treatment. Mesoangioblasts (MABs) are multipotent progenitor cells that can differentiate to a myogenic lineage and that can be used to express Dystrophin upon transplantation into muscles, in autologous gene therapy approaches. However, their fate in the muscle environment remains poorly characterized. Here, we investigated the differentiation fate of MABs following their transplantation in DMD murine muscles using a mass cytometry strategy. This allowed the identification and isolation of a fraction of MAB-derived cells presenting common properties with satellite muscle stem cells. This analysis also indicated that most cells did not undergo a myogenic differentiation path once in the muscle environment, limiting their capacity to restore dystrophin expression in transplanted muscles. We therefore assessed whether MAB treatment with cytokines and growth factors prior to engraftment may improve their myogenic fate. We identified a combination of such signals that ameliorates MABs capacity to undergo myogenic differentiation in vivo and to restore dystrophin expression upon engraftment in myopathic murine muscles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2019.101619DOI Listing

Publication Analysis

Top Keywords

murine muscles
12
muscle environment
8
undergo myogenic
8
myogenic differentiation
8
restore dystrophin
8
dystrophin expression
8
muscles
5
characterization mesoangioblast
4
mesoangioblast cell
4
fate
4

Similar Publications

Bone Marrow-derived NGFR-positive Dendritic Cells Regulate Arterial Remodeling.

Am J Physiol Cell Physiol

January 2025

Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan.

It has been proposed that bone marrow contributes to the pathogenesis of arteriosclerosis. Nerve growth factor receptor (NGFR) is expressed in bone marrow stromal cells; it is also present in peripheral blood and ischemic coronary arteries. We hypothesized that bone marrow-derived NGFR-positive (NGFR) cells regulate arterial remodeling.

View Article and Find Full Text PDF

Cellular prion protein (PRNP) has been implicated in various physiological processes in different cell types, for decades. Little has been known how PRNP functions in multiple, yet related processes within a particular system. In our current study, with the aid of high-throughput RNA-sequencing technique, we have presented an overall transcriptome profile of rat vascular smooth muscle cells (VSMCs) with Prnp knockdown.

View Article and Find Full Text PDF

Background: Smooth muscle cells (SMCs) of the proximal thoracic aorta are derived from second heart field (SHF) and cardiac neural crest lineages. Recent studies, both in vitro and in vivo, have implied relevance of lineage-specific SMC functions in the pathophysiology of thoracic aortic diseases; however, whether 2 lineage-derived SMCs have any predisposed transcriptional differences in the control aorta remains unexplored.

Methods: Single-cell RNA sequencing and single-nucleus assay for transposase-accessible chromatin sequencing were performed on isolated cells from the aortic root and ascending aortas of 14-week-old SHF-traced () and cardiac neural crest-traced () male mice.

View Article and Find Full Text PDF

Postinterventional restenosis is a major challenge in the treatment of peripheral vascular disease. Current anti-restenosis drugs inhibit neointima hyperplasia but simultaneously impair endothelial repair due to indiscrminative cytotoxity. Stem cell-derived exosomes provide multifaceted therapeutic effects by delivering functional miRNAs to endothelial cells, macrophages, and vascular smooth muscle cells (VSMCs).

View Article and Find Full Text PDF

The close interaction of mitochondrial fission and mitophagy, two crucial mechanisms, is key in the progression of myocardial ischemia-reperfusion (IR) injury. However, the upstream regulatory mechanisms governing these processes remain poorly understood. Here, we demonstrate a marked elevation in Nr4a1 expression following myocardial IR injury, which is associated with impaired cardiac function, heightened cardiomyocyte apoptosis, exacerbated inflammatory responses, and endothelial dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!