Ligand-induced disorder-to-order transitions characterized by structural proteomics and molecular dynamics simulations.

J Proteomics

University of Victoria -Genome British Columbia Proteomics Centre, #3101-4464 Markham Street, Vancouver Island Technology Park, Victoria, BC V8Z7X8, Canada; Department of Biochemistry and Microbiology, University of Victoria, Petch Building, Room 270d, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada; Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, H3T 1E2, Canada; Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, H3T 1E2, Canada. Electronic address:

Published: January 2020

For disordered proteins, ligand binding can be a critical event that changes their structural dynamics. The ability to characterize such changes would facilitate the development of drugs designed to stabilize disordered proteins, whose mis-folding is important for a number of pathologies, including neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. In this study, we used hydrogen/deuterium exchange, differential crosslinking, differential surface modification, and molecular dynamics (MD) simulations to characterize the structural changes in disordered proteins that result from ligand binding. We show here that both an ATP-independent protein chaperone, Spy L32P, and the FK506 binding domain of a prolyl isomerase, FKBP-25 F145A/I223P, are disordered, yet exhibit structures that are distinct from chemically denatured unfolded states in solution, and that they undergo transitions to a more structured state upon ligand binding. These systems may serve as models for the characterization of ligand-induced disorder-to-order transitions in proteins using structural proteomics approaches. SIGNIFICANCE: In this study, we used hydrogen/deuterium exchange, differential crosslinking, differential surface modification, and molecular-dynamics simulations to characterize the structural changes in disordered proteins that result from ligand binding. The protein-ligand systems studied here (the ATP-independent protein chaperone, Spy L32P, and the FK506 binding domain of a prolyl isomerase, FKBP-25 F145A/I223P) may serve as models for understanding ligand-induced disorder-to-order transitions in proteins. Additionally, the structural proteomic techniques demonstrated here are shown to be effective tools for the characterization of disorder-to-order transitions and can be used to facilitate study of other systems in which this class of structural transition can be used for modulating major pathological features of disease, such as the abnormal protein aggregation that occurs with Parkinson's disease and Alzheimer's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6878985PMC
http://dx.doi.org/10.1016/j.jprot.2019.103544DOI Listing

Publication Analysis

Top Keywords

disorder-to-order transitions
16
disordered proteins
16
ligand binding
16
ligand-induced disorder-to-order
12
structural proteomics
8
molecular dynamics
8
dynamics simulations
8
study hydrogen/deuterium
8
hydrogen/deuterium exchange
8
exchange differential
8

Similar Publications

The homo-dodecameric ring-shaped RNA binding attenuation protein (TRAP) from binds up to twelve tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the operon mRNA, thereby downregulating biosynthesis of Trp. Thermodynamic measurements of Trp binding have revealed a range of cooperative behavior for different TRAP variants, even if the averaged apparent affinities for Trp have been found to be similar. Proximity between the ligand binding sites, and the ligand-coupled disorder-to-order transition has implicated nearest-neighbor interactions in cooperativity.

View Article and Find Full Text PDF

Introduction: Molecular recognition features (MoRFs) are regions in protein sequences that undergo induced folding upon binding partner molecules. MoRFs are common in nature and can be predicted from sequences based on their distinctive sequence signatures.

Areas Covered: We overview 20 years of progress in the sequence-based prediction of MoRFs which resulted in the development of 25 predictors of MoRFs that interact with proteins, peptides, and lipids.

View Article and Find Full Text PDF

Effects of salt ions and pH on deamidated soybean protein hydrogels formation: Molecular structure, thermal aggregation and network.

Food Chem

December 2024

Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China. Electronic address:

The aim of this study was to explore the effects of environmental factors (salt ions and pH) on the thermal gelation process of deamidated soy protein isolate (DSPI). The results indicated that with increasing salt ion concentration, DSPI assembled into larger aggregates, which were more prone to aggregation in thermal reactions, ultimately forming a gel network with higher viscoelasticity. The strength enhancement of ion-induced gel networks followed the order from highest to lowest: Ca > Mg > Na.

View Article and Find Full Text PDF

The role of surface substitution in the atomic disorder-to-order phase transition in multi-component core-shell structures.

Nat Commun

November 2024

Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.

Article Synopsis
  • This study focuses on the role of intermetallic phases in catalysts, specifically examining the phase transitions and atomic diffusion in Pd@Pt-Co cubic nanoparticles during heating.
  • Using advanced microscopy techniques, researchers found that as Pd atoms diffuse outward, they partially replace Pt in the surface, creating a new (Pt, Pd)-Co system which enables phase transitions at lower temperatures (400°C).
  • At higher temperatures, excessive diffusion alters the material's composition and results in decreased atomic ordering and changes in shape, highlighting how understanding these processes can aid in designing better multi-component catalyst systems.
View Article and Find Full Text PDF

Tuning the size of intermetallic nanocrystals is challenging due to the conflicting effects of surface free energy and surface diffusion on the disorder-to-order phase transition during wet-chemistry growth. Herein, we synthesized intermetallic PdCd nanocubes with tunable sizes ranging from 8 to 15 nm by adjusting the Cd precursor concentrations using a wet-chemistry approach. This process shares a mechanism of size tuning similar to quantum dot synthesis, involving the regulation of monomer concentration determined by the precursor concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!