We have developed an electrospray mass spectrometry method which is capable to determine antibody affinity in a gas phase experiment. A solution with the immune complex is electrosprayed and multiply charged ions are translated into the gas phase. Then, the intact immune-complex ions are separated from unbound peptide ions. Increasing the voltage difference in a collision cell results in collision induced dissociation of the immune-complex by which bound peptide ions are released. When analyzing a peptide mixture, measuring the mass of the complex-released peptide ions identifies which of the peptides contains the epitope. A step-wise increase in the collision cell voltage difference changes the intensity ratios of the surviving immune complex ions, the released peptide ions, and the antibody ions. From all the ions´ normalized intensity ratios are deduced the thermodynamic quasi equilibrium dissociation constants (K) from which are calculated the apparent gas phase Gibbs energies of activation over temperature (ΔGT). The order of the apparent gas phase dissociation constants of four antibody - epitope peptide pairs matched well with those obtained from in-solution measurements. The determined gas phase values for antibody affinities are independent from the source of the investigated peptides and from the applied instrument. Data are available via ProteomeXchange with identifier PXD016024. SIGNIFICANCE: ITEM - TWO enables rapid epitope mapping and determination of apparent dissociation energies of immune complexes with minimal in-solution handling. Mixing of antibody and antigen peptide solutions initiates immune complex formation in solution. Epitope binding strengths are determined in the gas phase after electrospraying the antibody / antigen peptide mixtures and mass spectrometric analysis of immune complexes under different collision induced dissociation conditions. Since the order of binding strengths in the gas phase is the same as that in solution, ITEM - TWO characterizes two most important antibody properties, specificity and affinity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2019.103572DOI Listing

Publication Analysis

Top Keywords

gas phase
28
peptide ions
16
immune complex
12
epitope mapping
8
ions
8
peptide
8
voltage difference
8
collision cell
8
collision induced
8
induced dissociation
8

Similar Publications

Direct Methane to Methanol Conversion: An Overview of Non-Syn Gas Catalytic Strategies.

Chem Rec

January 2025

Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India.

Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts.

View Article and Find Full Text PDF

Solvent Mediated Interfacial Microenvironment Design for High-Performance Electrochemical CO Reduction to C Products.

Small

January 2025

National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.

Electrochemical CO reduction (CORR) in membrane electrode assembly (MEA) represents a viable strategy for converting CO into value-added multi-carbon (C) compounds. Therefore, the microstructure of the catalyst layer (CL) affects local gas transport, charge conduction, and proton supply at three-phase interfaces, which is significantly determined by the solvent environment. However, the microenvironment of the CLs and the mechanism of the solvent effect on C selectivity remains elusive.

View Article and Find Full Text PDF

While biomass burning (BB) is the largest source of fine particles in the atmosphere, the influence of relative humidity (RH) and photochemistry on BB secondary organic aerosol (BB-SOA) formation and aging remains poorly constrained. These effects need to be addressed to better capture and comprehend the evolution of BB-SOA in the atmosphere. Cresol (CHO) is used as a BB proxy to investigate these effects.

View Article and Find Full Text PDF

Ab initio study on the dynamics and spectroscopy of collective rovibrational polaritons.

J Chem Phys

January 2025

Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary.

Accurate rovibrational molecular models are employed to gain insight in high-resolution into the collective effects and intermolecular processes arising when molecules in the gas phase interact with a resonant infrared (IR) radiation mode. An efficient theoretical approach is detailed, and numerical results are presented for the HCl, H2O, and CH4 molecules confined in an IR cavity. It is shown that by employing a rotationally resolved model for the molecules, revealing the various cavity-mediated interactions between the field-free molecular eigenstates, it is possible to obtain a detailed understanding of the physical processes governing the energy level structure, absorption spectra, and dynamic behavior of the confined systems.

View Article and Find Full Text PDF

Wildfires at the wildland-urban interface (WUI) have been increasing in frequency over recent decades due to increased human development and shifting climatic patterns. The work presented here focuses on the impacts of a WUI fire on indoor air using field measurements of volatile organic compounds (VOCs) by Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS). We found a slow decrease in VOC mixing ratios over the course of roughly 5 weeks starting 10 days after the fire, and those levels decreased to ∼20% of the initial indoor value on average.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!