Nepenthaceae is one of the largest carnivorous plant families and features ecological and morphological adaptations indicating an impressive adaptive radiation. However, investigation of evolutionary and taxonomic questions is hindered by poor phylogenetic understanding, with previous molecular studies based on limited loci and taxa. We use high-throughput sequencing with a target-capture methodology based on a 353-loci, probe set to recover sequences for 197 samples, representing 151 described or putative Nepenthes species. Phylogenetic analyses were performed using supermatrix and maximum quartet species tree approaches. Our analyses confirm five Western outlier taxa, followed by N. danseri, as successively sister to the remainder of the group. We also find mostly consistent recovery of two major Southeast Asian clades. The first contains common or widespread lowland species plus a Wallacean-New Guinean clade. Within the second clade, sects. Insignes and Tentaculatae are well supported, while geographically defined clades representing Sumatra, Indochina, Peninsular Malaysia, Palawan, Mindanao and Borneo are also consistently recovered. However, we find considerable conflicting signal at the site and locus level, and often unstable backbone relationships. A handful of Bornean taxa are inconsistently placed and require further investigation. We make further suggestions for a modified infra-generic classification of genus Nepenthes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2019.106668DOI Listing

Publication Analysis

Top Keywords

phylogenomic analysis
4
analysis nepenthes
4
nepenthes nepenthaceae
4
nepenthaceae nepenthaceae
4
nepenthaceae largest
4
largest carnivorous
4
carnivorous plant
4
plant families
4
families features
4
features ecological
4

Similar Publications

Cold stress in winter is one of the most severe abiotic stresses on plant growth and flourishing, and the selection of cold tolerant genotypes is an important strategy to ensure the safety of plant growth and development. Cyclocarya paliurus, a diclinous and versatile tree species originally in subtropical regions, has been introduced and cultivated in the warm temperate zone of China to meet the increasing market demand for its leaf yield. However, information regarding its cold tolerance remains limited.

View Article and Find Full Text PDF

Sporadic epidemics of coxsackievirus A4 (CVA4) have been reported worldwide. However, the lack of the whole genome sequence has restricted the study of the gene characterization and evolution of CVA4. In this study, four whole genome sequences and 17 VP1 sequences of CVA4 identified from Linyi, northern China, in summer 2024 were used for genetic characterization and phylogenetic analysis.

View Article and Find Full Text PDF

We describe a novel Malassezia species named Malassezia polysorbatinonusus, isolated from a Japanese patient with seborrheic dermatitis. The internal transcribed spacer (ITS) region of the isolate (LSEM 4845) were only 94.7% identical to those of M.

View Article and Find Full Text PDF

The chloroplast genome is an important tool for studying plant classification, evolution, and the heterologous production of secondary metabolites and protein drugs. With advancements in sequencing technology and reductions in sequencing costs, chloroplast genome data have rapidly accumulated. However, existing chloroplast genome databases suffer from issues such as incomplete data, inadequate management, and inconsistent, inaccurate information, posing significant challenges for the development and utilization of the chloroplast genome.

View Article and Find Full Text PDF

Artemisiae Scoporiae Herba is derived from Artemisia scoparia or A. capillaris. The accurate identification of the herbs, particularly when dealing with bulk samples, is critical for ensuring the quality and efficacy of the medicinal product.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!