In preclinical models, it has been reported that social defeat stress activates microglial cells in the CNS. Translocator protein 18 kDa (TSPO) is a mitochondrial protein expressed on microglia in the CNS that has been proposed to be a useful biomarker for brain injury and inflammation. We hypothesized that a TSPO antagonist, ONO-2952, would inhibit the neuroinflammation induced by microglial hyperactivation and associated depressive-like behaviors. An in vitro analysis showed that ONO-2952 suppressed the release of pro-inflammatory cytokines and mitochondrial reactive oxygen species in cultured microglia stimulated by lipopolysaccharide. In mice submitted to chronic social defeat stress, microglia predominantly expressed TSPO in limbic areas implicated in depressive-like behaviors, including the amygdala, ventral hippocampus and nucleus accumbens, in which an increase in the production of pro-inflammatory cytokines in vivo were associated. Treating animals with ONO-2952 during chronic social defeat stress ameliorated impairments in social avoidance and anxiety-like behaviors and suppressed pro-inflammatory cytokine production, suggesting that ONO-2952 exerted an anti-stress effect in this animal model of depression. Thus, targeting TSPO as a candidate for the development of antidepressants that reduce susceptibility to chronic stress could pave the way toward therapeutic interventions for relapse prophylaxis in depression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2019.107835DOI Listing

Publication Analysis

Top Keywords

social defeat
16
defeat stress
16
chronic social
12
translocator protein
8
antagonist ono-2952
8
depressive-like behaviors
8
pro-inflammatory cytokines
8
ono-2952
5
social
5
stress
5

Similar Publications

Drug addiction is a multifactorial syndrome in which genetic predispositions and exposure to environmental stressors constitute major risk factors for the early onset, escalation, and relapse of addictive behaviors. While it is well known that stress plays a key role in drug addiction, the genetic factors that make certain individuals particularly sensitive to stress and, thereby, more vulnerable to becoming addicted are unknown. In an effort to test a complex set of gene x environment interactions-specifically gene x chronic stress-here we leveraged a systems genetics resource: BXD recombinant inbred mice (BXD5, BXD8, BXD14, BXD22, BXD29, and BXD32) and their parental mouse lines, C57BL/6J and DBA/2J.

View Article and Find Full Text PDF

Background And Purpose: Irritable bowel syndrome (IBS) is a common condition that is challenging to treat, and novel drugs are needed for this condition. Previously, a chronic vicarious social defeat stress (cVSDS) mouse model exhibits IBS-like symptoms. Also agonists of the opioid δ-receptor exert anti-stress effects in rodents with minimal adverse effects.

View Article and Find Full Text PDF

Chronic stress increases the incidence of psychiatric disorders including anxiety, depression, and posttraumatic stress disorder. Repeated Social Defeat (RSD) in mice recapitulates several key physiological, immune, and behavioral changes evident after chronic stress in humans. For instance, neurons in the prefrontal cortex, amygdala, and hippocampus are involved in the interpretation of and response to fear and threatful stimuli after RSD.

View Article and Find Full Text PDF

Chronic stress is a major contributor to the development of major depressive disorder, one of the leading causes of disability worldwide. Using a model of repeated social defeat stress in mice, we and others have reported that neuroinflammation plays a dynamic role in the development of behavioral deficits consistent with social avoidance and impaired reward responses. Animals susceptible to the model also exhibit hypomyelination in the medial prefrontal cortex, indicative of changes in the differentiation pathway of cells of the oligodendroglial lineage (OLN).

View Article and Find Full Text PDF

Purpose: Perineuronal nets (PNNs) are extracellular matrix proteoglycans surrounding neurons and glia. It has been suggested that PNNs are involved in the pathophysiology of multiple CNS illnesses, including stress-related neuropsychiatric disorders like schizophrenia, major depressive disorder, and anxiety disorders.

Method: Before examining the putative role of PNNs in stress-related responses, we described for the first time the anatomical distribution in Syrian hamsters (Mesocricetus auratus), an excellent model organism for studying social stress and circadian rhythms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!