The number of patients suffering from dementia due to Alzheimer's disease (AD) is constantly rising worldwide. This has accordingly resulted in huge burdens on the health systems and involved families. Lack of profound understanding of neural networking in normal brain and their interruption in AD makes the treatment of this neurodegenerative multifaceted disease a challenging issue. In recent years, mathematical and computational methods have paved the way towards a better understanding of the brain functional connectivity. Thus, much attention has been paid to this matter from both basic science researchers and clinicians with an interdisciplinary approach to determine what is not functioning properly in AD patients and how this malfunctioning can be addressed. In this review, a number of AD-related articles and well-studied pathophysiologic topics (e.g., amyloid-beta, neurofibrillary tangles, Ca dysregulation, and synaptic plasticity alterations) has been literally surveyed from a computational and systems biology point of view. The neural networks were discussed from biological and mathematical point of views and their alterations in recent findings were further highlighted. Application of the graph theoretical analysis in the brain imaging was reviewed, depicting the relations between brain structure and function, without diving into mathematical details. Moreover, differential rate equations were briefly articulated, emphasizing the potential use of these equations in simplifying complex processes in relevance to pathologies of AD. Comprehensive insights were given into the AD progression from neural networks perspective, which may lead us towards potential strategies for early diagnosis and effective treatment of AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2019.09.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!