The chemical transformation of nanowire templates into nanotubes is a promising avenue toward hollow one-dimensional (1D) nanostructures. To date, high-quality single crystalline tubes of nonlayered inorganic crystals have been obtained by solid-state reactions in diffusion couples of nanowires with deposited thin film shells, but this approach presents issues in achieving single-phase tubes with a desired stoichiometry. Chemical transformations with reactants supplied from the gas- or vapor-phase can avoid these complications, allowing single-phase nanotubes to be obtained through self-termination of the reaction once the sacrificial template has been consumed. Here, we demonstrate the realization of this scenario with the transformation of zincblende GaAs nanowires into single-crystalline cubic γ-GaS nanotubes by reaction with sulfur vapor. The conversion proceeds via the formation of epitaxial GaAs-GaS core-shell structures, vacancy injection and aggregation into Kirkendall voids, elastic relaxation of the detached GaS shell, and finally complete incorporation of Ga in a crystalline chalcogenide tube. Absorption and luminescence spectroscopy on individual nanotubes show optoelectronic properties, notably a ∼3.1 eV bandgap and intense band-edge and near band-edge emission consistent with high-quality single crystals, along with transitions between gap-states due to the inherent cation-vacancy defect structure of GaS. Our work establishes the transformation of nanowires via vapor-phase reactions as a viable approach for forming single-crystalline hollow 1D nanostructures with promising properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.9b03783DOI Listing

Publication Analysis

Top Keywords

γ-gas nanotubes
8
gaas nanowires
8
high-quality single
8
nanotubes
5
single-crystalline γ-gas
4
nanotubes epitaxial
4
epitaxial conversion
4
conversion gaas
4
nanowires
4
nanowires chemical
4

Similar Publications

A mirror-image experiment: Sorting carbon nanotubes by L-DNA.

PNAS Nexus

January 2025

Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA.

DNA has found increasing applications in molecular engineering, yet its chiral property has rarely been utilized. Here, we report a mirror-image experiment using naturally occurring D-DNA and its enantiomer L-DNA to sort a chiral mixture of single-wall carbon nanotubes (SWCNTs). We find that parity conservation leads to a robust experimental outcome: changing DNA chirality results in handedness inversion of the purified nanotube.

View Article and Find Full Text PDF

An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.

View Article and Find Full Text PDF

This work explores the enhancement of EMI shielding efficiency of polyurethane (PU) foam by loading multiwall carbon nanotube (MWCNTs)-decorated hollow glass microspheres (HGMs). MWCNT was coated onto the HGM surface by a simple solution casting technique. The coated HGM particles were loaded in PU foams, resulting in an even dispersion of MWCNT in the foam struts, thereby forming an interconnected conductive network in the polymer matrix.

View Article and Find Full Text PDF

Polymers have been ruling the packaging industry for decades due to their versatility, easy manufacturability, and low cost. The overuse of non-biodegradable plastics in food packaging has become a serious environmental concern. Multi-walled carbon nanotube (MWCNT) reinforced nanocomposites have exceptional electrical, thermal, and mechanical properties.

View Article and Find Full Text PDF

Widely used catalysts for electrocatalytic hydrogen (H) evolution reaction (HER) have high platinum (Pt) contents and show low efficiencies in neutral and alkaline solutions. Herein, a carbon nanotube (CNT) supported Pt catalyst (Pt/CNT45) with 1 wt.% Pt is fabricated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!