We develop a fluorine-free preparation of the superhydrophobic surface on an aluminum alloy with anticorrosion performance and mechanical robustness. The surface morphology, chemical composition, and water repellency were determined with SEM, CLSM, EDS, FT-IR, TG, and contact-angle measurements, respectively. The aluminum matrix superhydrophobic surface (STA-PDMS-ZnO sample) was able to display excellent repellency to water with a WCA of 152° and a WSA of 2°. The outstanding superhydrophobicity on the as-prepared surface was greatly related to the construction of stepwise multilayered micro- and nanostructure within the superhydrophobic surface. Because of the special surface structure, the mechanical robustness and corrosion resistance of the STA-PDMS-ZnO sample were improved. Notably, the anticorrosion mechanism by air pockets was explained by the comparison of two superhydrophobic surfaces prepared with the same low-surface-energy chemicals. The superhydrophobic surface with a multilayered micro- and nanostructure (STA-PDMS-ZnO sample) showed greater corrosion resistance than the surface coated by superhydrophobic modification (control sample). This is because of the entrapments of numerous air pockets within the aluminum matrix superhydrophobic surface, thus strengthening the corrosion resistance. On the basis of the results, the multidimensional superhydrophobic surface is promising for having a good application future in the field of metal corrosion protection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.9b02910 | DOI Listing |
Langmuir
January 2025
School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
Aerogels hold great potential in thermal insulation, catalytic supports, adsorption, and separation, due to their low density, high porosity, and low thermal conductivity. However, their inherent mechanical fragility and limited control functionality pose substantial challenges that hinder their practical use. In this study, a strategy is developed for the fabrication of cross-linked aramid nanofiber aerogels (cANFAs) by combining internanofiber surface cross-linking with ice-templating techniques.
View Article and Find Full Text PDFAdv Mater
January 2025
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Shark skin features superhydrophilic and riblet-textured denticles that provide drag reduction, antifouling, and mechanical protection. The artificial riblet structures exhibit drag reduction capabilities in turbulent flow. However, the effects of the surface wettability of shark denticles and the cavity region underneath the denticle crown on drag reduction remain insufficiently explored.
View Article and Find Full Text PDFACS Nano
January 2025
Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China.
Blood-contacting medical devices can easily trigger immune responses, leading to thrombosis and hyperblastosis. Constructing microtexture that provides efficient antithrombotic and rapid reendothelialization performance on complex curved surfaces remains a pressing challenge. In this work, we present a robust and regular micronano binary texture on the titanium surface, characterized by exceptional mechanical strength and precisely controlled wettability to achieve excellent hemocompatibility.
View Article and Find Full Text PDFLangmuir
January 2025
School of Chemical Engineering, Department of Chemistry and Materials Science, Aalto University, Tietotie 3 Espoo 02150, Finland.
Superhydrophobic surfaces find applications in numerous biomedical scenarios, requiring the repellence of biofluids and biomolecules. Plastron, the trapped air between a superhydrophobic surface and a wetting liquid, plays a pivotal role in biofluid repellency. A key challenge, however, is the often short-lived plastron stability in biofluids and the lack of knowledge surrounding it.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
The scarcity of freshwater resources and the treatment of dye wastewater have emerged as unavoidable challenges that need to be addressed. The combination of solar-driven interfacial evaporation, photocatalytic degradation, and superhydrophobic surface provides an effective approach for seawater desalination and the treatment of organic dyes. In this study, we fabricated a multifunctional synergistic solar evaporator by depositing cupric oxide nanoparticles onto polypyrrole (PPy) coating and subsequently modified it with a hydrophobic agent successfully.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!