A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Efficient Viologen-Based Electron Donor to Nitrogenase. | LitMetric

An Efficient Viologen-Based Electron Donor to Nitrogenase.

Biochemistry

Department of Chemistry and Biochemistry , Utah State University, 0300 Old Main Hill , Logan , Utah 84322 , United States.

Published: November 2019

Nitrogenase catalyzes the reduction of N to NH, supporting all biological nitrogen fixation. Electron donors to this enzyme are ferredoxin or flavodoxin () and sodium dithionite (). Features of these electron donors put a limit on spectrophotometric studies and electrocatalytic applications of nitrogenase. Although it is common to use methyl viologen as an electron donor for many low-potential oxidoreductases, decreased nitrogenase activity is observed with an increasing concentration of methyl viologen, limiting its utility under many circumstances. In this work, we suggest that this concentration-dependent decrease in activity can be explained by the formation of a dimer of the radical cation of methyl viologen (MeV) at higher methyl viologen concentrations. In addition, viologens functionalized with positively and negatively charged groups were synthesized and studied using spectroscopy and cyclic voltammetry. A sulfonated viologen derivative, 1,1'-bis(3-sulfonatopropyl)-4,4'-bipyridinium radical {[(SPr)V]}, was found to support full nitrogenase activity up to a mediator concentration of 3 mM, while the positively charged viologen derivative was not an efficient reductant of nitrogenase due to the high standard redox potential. The utility of [(SPr)V] as an electron donor for nitrogenase was demonstrated by a simple, sensitive spectrophotometric assay for nitrogenase activity that can provide accurate values for the specific activity and turnover rate constant under argon. Under N, the formation of ammonia was confirmed. Because of the observed full activity of nitrogenase and low overpotential, [(SPr)V] should also prove to be valuable for nitrogenase electrocatalysis, including bioelectrosynthetic N reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.9b00844DOI Listing

Publication Analysis

Top Keywords

methyl viologen
16
electron donor
12
nitrogenase activity
12
nitrogenase
10
donor nitrogenase
8
electron donors
8
viologen derivative
8
viologen
6
activity
6
electron
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!