'One DB to rule them all'-the RING: a Regulatory INteraction Graph combining TFs, genes/proteins, SNPs, diseases and drugs.

Database (Oxford)

Control and Computer Engineering Department, Politecnico di Torino, Italy.

Published: January 2019

In the last decade, genomics data have been largely adopted to sketch, study and better understand the complex mechanisms that underlie biological processes. The amount of publicly available data sources has grown accordingly, and several types of regulatory interactions have been collected and documented in literature. Unfortunately, often these efforts do not follow any data naming/interoperability/formatting standards, resulting in high-quality but often uninteroperable heterogeneous data repositories. To efficiently take advantage of the large amount of available data and integrate these heterogeneous sources of information, we built the RING (Regulatory Interaction Graph), an integrative standardized multilevel database of biological interactions able to provide a comprehensive and unmatched high-level perspective on several phenomena that take place in the regulatory cascade and that researchers can use to easily build regulatory networks around entities of interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6827393PMC
http://dx.doi.org/10.1093/database/baz108DOI Listing

Publication Analysis

Top Keywords

ring regulatory
8
regulatory interaction
8
interaction graph
8
regulatory
5
data
5
'one rule
4
rule all'-the
4
all'-the ring
4
graph combining
4
combining tfs
4

Similar Publications

Vitiligo is a complex autoimmune disease characterized by the loss of melanocytes, leading to skin depigmentation. Despite advances in understanding its genetic and molecular basis, the precise mechanisms driving vitiligo remain elusive. Integrating multiple layers of omics data can provide a comprehensive view of disease pathogenesis and identify potential therapeutic targets.

View Article and Find Full Text PDF

Mediator25 (MED25) has been ascribed as a signal-processing and -integrating center that controls jasmonate (JA)-induced and MYC2-dependent transcriptional output. A better understanding of the regulation of MED25 stability will undoubtedly advance our knowledge of the precise regulation of JA signaling-related transcriptional output. Here, we report that Arabidopsis MED16 activates JA-responsive gene expression by promoting MED25 stability.

View Article and Find Full Text PDF

The occurrence of external L-glutamate at the Arabidopsis root tip triggers major changes in root architecture, but the mechanism of -L-Glu sensing is unknown. Members of the family of GLUTAMATE RECEPTOR-LIKE (GLR) proteins are known to act as amino acid-gated Ca-permeable channels and to have signalling roles in diverse plant processes. To investigate the possible role of GLRs in the root architectural response to L-Glu, we screened a collection of mutants with T-DNA insertions in each of the 20 AtGLR genes.

View Article and Find Full Text PDF

The correct synthesis and degradation of proteins are vital for numerous biological processes in the human body, with protein degradation primarily facilitated by the ubiquitin-proteasome system. The SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase, a member of the Cullin-RING E3 ubiquitin ligase (CRL) family, plays a crucial role in mediating protein ubiquitination and subsequent 26S proteasome degradation during normal cellular metabolism. Notably, SCF is intricately linked to the pathogenesis of various diseases, including malignant tumors.

View Article and Find Full Text PDF

In many multicellular organisms, sexual development is not determined by XX/XY or ZW/ZZ systems but by U/V sex chromosomes. In U/V systems, sex determination occurs in the haploid phase, with U chromosomes in females and V chromosomes in males. Here, we explore several male, female, and partially sex-reversed male lines of giant kelp to decipher how U/V sex chromosomes and autosomes initiate male versus female development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!