Little is known about metallic clusters consisting merely of a dozen of atoms or even less, despite of their importance in catalysis and crystal nucleation. Scanning transmission electron microscopy (STEM) provides direct atomic structure information but has inherently suffered from limited time resolution. We employ fast dynamic STEM combined with a spatio-temporal image denoising algorithm to explore the structure and stability of Pt clusters on carbon, which represents a highly relevant catalysis system. At room temperature, dynamic amorphous 2D structures are found, while above ≈300 °C, the clusters transform into a crystalline state. Our experimental and theoretical data reveal an unexpected strong trend of the crystalline clusters to exhibit the face-centered cubic, bulk structure of Pt with cuboidal geometries being most prominent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201911068 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!