The emergence of cesium lead iodide (CsPbI ) perovskite solar cells (PSCs) has generated enormous interest in the photovoltaic research community. However, in general they exhibit low power conversion efficiencies (PCEs) because of the existence of defects. A new all-inorganic perovskite material, CsPbI :Br:InI , is prepared by defect engineering of CsPbI . This new perovskite retains the same bandgap as CsPbI , while the intrinsic defect concentration is largely suppressed. Moreover, it can be prepared in an extremely high humidity atmosphere and thus a glovebox is not required. By completely eliminating the labile and expensive components in traditional PSCs, the all-inorganic PSCs based on CsPbI :Br:InI and carbon electrode exhibit PCE and open-circuit voltage as high as 12.04% and 1.20 V, respectively. More importantly, they demonstrate excellent stability in air for more than two months, while those based on CsPbI can survive only a few days in air. The progress reported represents a major leap for all-inorganic PSCs and paves the way for their further exploration in order to achieve higher performance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201903448DOI Listing

Publication Analysis

Top Keywords

all-inorganic perovskite
8
perovskite solar
8
solar cells
8
cspbi perovskite
8
cspbi brini
8
all-inorganic pscs
8
based cspbi
8
cspbi
6
defect-engineering-enabled high-efficiency
4
all-inorganic
4

Similar Publications

Few-Layered Black Phosphorene as Hole Transport Layer for Novel All-Inorganic Perovskite Solar Cells.

Materials (Basel)

January 2025

Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.

The CsPbBr perovskite exhibits strong environmental stability under light, humidity, temperature, and oxygen conditions. However, in all-inorganic perovskite solar cells (PSCs), interface defects between the carbon electrode and CsPbBr limit the carrier separation and transfer rates. We used black phosphorus (BP) nanosheets as the hole transport layer (HTL) to construct an all-inorganic carbon-based CsPbBr perovskite (FTO/c-TiO/m-TiO/CsPbBr/BP/C) solar cell.

View Article and Find Full Text PDF

All-inorganic lead halide perovskites (LHPs) and their use in optoelectronic devices have been widely explored because they are more thermally stable than their hybrid organic‒inorganic counterparts. However, the active perovskite phases of some inorganic LHPs are metastable at room temperature due to the critical structural tolerance factor. For example, black phase CsPbI is easily transformed back to the nonperovskite yellow phase at ambient temperature.

View Article and Find Full Text PDF

All-inorganic perovskite materials have been widely used in various devices, including lasers, light-emitting diodes (LEDs), and solar cells, due to their exceptional optoelectronic properties. Devices utilizing high-quality single crystals are anticipated to achieve significantly enhanced performance. In this work, we present a high-performance vertical cavity surface emitting laser (VCSEL) based on a single-crystal CsPbBr microplatelet, fabricated through a simple solution process and sandwiched between two distributed Bragg reflector (DBRs).

View Article and Find Full Text PDF
Article Synopsis
  • Lead-free inorganic halide perovskites like BaPX (X = Cl, F, I, Br) are attracting interest for their excellent mechanical, optical, and electronic properties in green photovoltaics.
  • Through first-principles calculations, the study revealed that BaPX has direct band gaps and strong ionic and covalent bonding, indicating promising electronic characteristics.
  • Simulations showed that solar cells using BaPF, BaPCl, BaPBr, and BaPI can achieve power conversion efficiencies ranging from 16.13% to 29.89%, with BaPI demonstrating the highest potential for future solar cell applications.
View Article and Find Full Text PDF

With many fascinating characteristics, such as color-tunability, narrow-band emission, and low-cost solution processability, all-inorganic lead halide perovskite quantum dots (QDs) have attracted keen attention for electroluminescent light-emitting diodes (QLEDs) and display applications. However, the performance of perovskite QLED devices is intrinsically limited by the inefficient electrical carrier transport capacity. Herein, one facile but effective method is proposed to enhance the perovskite QLED performance by incorporating a short carbon chain ligand of 2-phenethylammonium bromide (PEABr) to passivate the CsPbBr QD surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!