Motivation: The existence of complex subpopulations of miRNA isoforms, or isomiRs, is well established. While many tools exist for investigating isomiR populations, they differ in how they characterize an isomiR, making it difficult to compare results across different tools. Thus, there is a need for a more comprehensive and systematic standard for defining isomiRs. Such a standard would allow investigation of isomiR population structure in progressively more refined sub-populations, permitting the identification of more subtle changes between conditions and leading to an improved understanding of the processes that generate these differences.
Results: We developed Jasmine, a software tool that incorporates a hierarchal framework for characterizing isomiR populations. Jasmine is a Java application that can process raw read data in fastq/fasta format, or mapped reads in SAM format to produce a detailed characterization of isomiR populations. Thus, Jasmine can reveal structure not apparent in a standard miRNA-Seq analysis pipeline.
Availability: Jasmine is implemented in Java and R and freely available at bitbucket https://bitbucket.org/bipous/jasmine/src/master/.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703784 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btz806 | DOI Listing |
Trends Genet
September 2024
Chair for Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, 66123 Saarbrücken, Germany. Electronic address:
MicroRNAs (miRNAs) and isoforms of their archetype, called isomiRs, regulate gene expression via complementary base-pair binding to messenger RNAs (mRNAs). The partially evolutionarily conserved isomiR sequence variations are differentially expressed among tissues, populations, and genders, and between healthy and diseased states. Aiming towards the clinical use of isomiRs as diagnostic biomarkers and for therapeutic purposes, several challenges need to be addressed, including (i) clarification of isomiR definition, (ii) improved annotation in databases with new standardization (such as the mirGFF3 format), and (iii) improved methods of isomiR detection, functional verification, and in silico analysis.
View Article and Find Full Text PDFBiol Futur
June 2023
Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary.
With the development of modern molecular genetics, the original "one gene-one enzyme" hypothesis has been outdated. For protein coding genes, the discovery of alternative splicing and RNA editing provided the biochemical background for the RNA repertoire of a single locus, which also serves as an important pillar for the enormous protein variability of the genomes. Non-protein coding RNA genes were also revealed to produce several RNA species with distinct functions.
View Article and Find Full Text PDFPLoS One
August 2022
Reproductive Medicine Center, Hefei, Anhui, P.R. China.
Hydrosalpinx is a chronic inflammatory condition with high recurrence rate, and it is reported among female population having fallopian tubal factor infertility. Previously, we have reported that interventional ultrasound sclerotherapy improves endometrial receptivity and pregnancy rate with negligible adverse effects in patients suffering from hydrosalpinx. During present investigation, we have used next generation sequencing (NGS) to characterize the isomiR profiles from the endometrium of patients suffering from hydrosalpinx before and after interventional ultrasound sclerotherapy.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
June 2022
Department of Biomedical Sciences, The University of Guelph, Guelph, ON, Canada.
Small non-coding RNAs have been linked to different phenotypes in bovine sperm, however attempts to identify sperm-borne molecular biomarkers of male fertility have thus far failed to identify a robust profile of expressed miRNAs related to fertility. We hypothesized that some differences in bull fertility may be reflected in the levels of different miRNAs in sperm. To explore such differences in fertility that are not due to differences in visible metrics of sperm quality, we employed Next Generation Sequencing to compare the miRNA populations in sperm from bulls with comparable motility and morphology but varying Sire Conception Rates.
View Article and Find Full Text PDFInt J Mol Sci
January 2021
Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
MicroRNAs (miRNAs or miRs) have a critical role in regulating stem cells (SCs) during development and altered expression can cause developmental defects and/or disease. Indeed, aberrant miRNA expression leads to wide-spread transcriptional dysregulation which has been linked to many cancers. Mounting evidence also indicates a role for miRNAs in the development of the cancer SC (CSC) phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!