AI Article Synopsis

Article Abstract

Single phase solid solutions based on copper and iron substitution into the nickel sites of NiMoN are produced using a citrate gel approach followed by ammonolysis. These metal nitrides show good ammonia synthesis activity at 500 °C and ambient pressure. The activity fell with copper content and increased with iron content, although these changes appear to be related to the surface areas of the catalysts. The oxide intermediates from the citrate gel process cleanly converted to the metal nitride under the ammonia synthesis gas stream (75% H, 25% N) providing more active catalysts than those pre-nitrided by ammonolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9dt03673cDOI Listing

Publication Analysis

Top Keywords

ammonia synthesis
12
synthesis activity
8
citrate gel
8
citrate-gel preparation
4
preparation ammonia
4
activity compounds
4
compounds quaternary
4
quaternary nimmon
4
nimmon systems
4
systems single
4

Similar Publications

Ammonia is a product of amino acid metabolism that accumulates in the blood of patients with liver cirrhosis, leading to neurotoxic effects and hepatic encephalopathy (HE). HE manifestations can range from mild, subclinical disturbances in cognition, or minimal HE (mHE) to gross disorientation and coma, a condition referred to as overt HE. Many blood-based biomarkers reflecting these neurotoxic effects of ammonia and liver disease can be measured in the blood allowing the development of new biomarkers to diagnose cirrhosis patients at risk of developing HE.

View Article and Find Full Text PDF

Although microenvironments surrounding single-atom catalysts (SACs) have been widely demonstrated to have a remarkable effect on their catalytic performances, it remains unclear whether the local structure beyond the secondary coordination shells works as well or not. Herein, we employed a series of metal-organic frameworks (MOFs) with well-defined and tunable second-beyond coordination spheres as model SAC electrocatalysts to discuss the influence of long-distance structure on the ammonia synthesis from nitrate, which were synthesized and denoted as Cu-NDI-X (X = NMe, H, F). It is first experimentally confirmed that the remote substitution of function groups beyond the secondary coordination sphere can remarkably affect the activity of ammonia synthesis.

View Article and Find Full Text PDF

Main-Group Sn Single Atoms on MoS for Selective Nitrite Electroreduction to Ammonia.

ACS Appl Mater Interfaces

January 2025

School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.

Electrocatalytic NO-to-NH reduction (NORR) offers an attractive way to remedy polluted NO and produce value-added NH. In this study, main-group Sn single atoms anchored on S-vacancy-rich MoS (Sn/MoS) are explored as a highly selective NORR catalyst. Combined theoretical computations and in situ spectroscopic measurements reveal that the isolated Sn sites of Sn/MoS can not only promote NO-to-NH activation and hydrogenation but also favor NH desorption and restrict H adsorption, thus enabling a highly selective NORR for NH synthesis.

View Article and Find Full Text PDF

Selective breeding is a potent method for developing strains with enhanced traits. This study compared the growth performance and stress responses of the genetically improved Abbassa Nile tilapia strain (G9; GIANT-G9) with a local commercial strain over 12 weeks, followed by exposure to stressors including high ammonia (10 mg TAN/L), elevated temperature (37 °C), and both for three days. The GIANT-G9 showed superior growth, including greater weight gain, final weight, length gain, specific growth rate, and protein efficiency ratio, as well as a lower feed conversion ratio and condition factor compared to the commercial strain.

View Article and Find Full Text PDF

Ammonia Decomposition Catalyzed by Co Nanoparticles Encapsulated in Rare Earth Oxide.

J Phys Chem Lett

January 2025

Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

We fabricated Co-based catalysts by the low-temperature thermal decomposition of R-Co intermetallics (R = Y, La, or Ce) to reduce the temperature of ammonia cracking for hydrogen production. The catalysts synthesized are nanocomposites of Co/RO with a metal-rich composition. In the Co/LaO catalyst derived from LaCo, Co nanoparticles of 10-30 nm size are enclosed by the LaO matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!