The bacterial RNA polymerase is a multi-subunit enzyme complex composed of six subunits, αββ'σω. The function of this enzyme is to transcribe the DNA base sequence to the RNA intermediate, which is ultimately translated to protein. Though the contribution of each subunit in RNA synthesis has been clearly elucidated, the role of the smallest ω-subunit is still unclear despite several studies. Recently, a study on a dominant negative mutant of has been reported in which the mutant was shown to render the RNA polymerase defective in transcription initiation (ω, N60D) and gave an insight on the function of ω in RNA polymerase. Serendipitously, we also obtained a silent mutant, and the mutant was found to be lethal during the isolation of toxic mutants. The primary focus of this study is to understand the mechanistic details of this lethality. Isolated ω shows a predominantly unstructured circular dichroism profile and becomes α-helical in the enzyme complex. This structural transition is perhaps the reason for this lack of function. Subsequently, we generated several silent mutants of ω to investigate the role of codon bias and the effect of rare codons with respect to their position in . Not all silent mutations affect the structure. RNA polymerase when reconstituted with structurally altered silent mutants of ω is transcriptionally inactive. The CodonPlus strain, which has surplus tRNA, was used to assess for the rescue of the phenotype in lethal silent mutants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822122 | PMC |
http://dx.doi.org/10.1021/acsomega.9b02103 | DOI Listing |
Biochemistry (Mosc)
December 2024
National Research Centre "Kurchatov Institute", Moscow, 123182, Russia.
Bacterial and viral RNA polymerases are promising targets for the development of new transcription inhibitors. One of the potential blockers of RNA synthesis is 7,8-dihydro-8-oxo-1,-ethenoadenine (oxo-εA), a synthetic compound that combines two adenine modifications: 8-oxoadenine and 1,-ethenoadenine. In this study, we synthesized oxo-εA triphosphate (oxo-εATP) and showed that it could be incorporated by the RNA-dependent RNA polymerase of SARS-CoV-2 into synthesized RNA opposite template residues A and G in the presence of Mn ions.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
Taking into account involvement of the RNA-binding proteins in regulation of activity of poly(ADP-ribose) polymerase 1 (PARP1), a key factor of DNA repair, the effect of the intrinsically disordered protein Sam68 (Src-associated substrate during mitosis of 68 kDa) on catalytic activity of this enzyme was studied. Plasmid containing coding sequence of the Sam68 protein was obtained. Using the obtained construct, conditions for the Sam68 expression in cells were optimized and procedure for protein purification was developed.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Department of Nuclear Medicine, Hefei BOE Hospital, Hefei City, Anhui Province, 241000, China. Electronic address:
Background: Diffuse large B-cell lymphoma (DLBCL) is a prevalent and aggressive form of non-Hodgkin's lymphoma with a complex etiology. NOP2/Sun domain 2 (NSUN2) is an RNA methyltransferase that has been linked to the regulation of gene expression in various cancers. However, the function of NSUN2 in DLBCL, specifically its contribution to exosome-driven tumor progression, remains to be thoroughly elucidated.
View Article and Find Full Text PDFChin Med J (Engl)
January 2025
Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing 100730, China.
Background: Fibrosis of the connective tissue in the vaginal wall predominates in pelvic organ prolapse (POP), which is characterized by excessive fibroblast-to-myofibroblast differentiation and abnormal deposition of the extracellular matrix (ECM). Our study aimed to investigate the effect of ECM stiffness on vaginal fibroblasts and to explore the role of methyltransferase 3 (METTL3) in the development of POP.
Methods: Polyacrylamide hydrogels were applied to create an ECM microenvironment with variable stiffness to evaluate the effects of ECM stiffness on the proliferation, differentiation, and expression of ECM components in vaginal fibroblasts.
Cell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!